TRIZ and Software Fini

Ron Fulbright
Director, Information Management & Systems
University of South Carolina Spartanburg
Spartanburg, SC 29302
rfulbright@uscs.edu

1 Introduction

In [1] and [2], Rea discusses software engineering andogs to Altshuller's 40 principles of
innovation. However, Rea did not lis andogs for principless 29 (pneumatic/hydraulic
congruction), 31 (porous meterids), 36 (phase trandgtion), 37 (themd expansion), 38
(accelerated oxidation), and 39 (inert environment). This atide completes Rea's lig by
offering software andlogs for these gx principles and summarizes dl 40 software TRIZ
principles.

2 Additional Software Analogs

2.1 Hydraulic/Pneumatic Construction (Principle 29)

For mechanicd systems, this principle gpplies to vaiable-volume parts inflaed with
liquid or gas. In software, he andog of a container with varying volume is a dynamicaly
alocated data structure. It is often unknown a compile time how much data a program
will need to handle With dynamicaly dlocaied data Structures, as more eements are
required, the data structure's memory footprint expands and then contracts as eements
are deleted.

2.2 Porous Materials (Principle 31)

We like to think that our software produces the correct output at al times. However,
sometimes this is not dways dedrable. The suggestion here is that “porous materid” be
interpreted as intentiondly making a software gpplication imperfect. An example is an
intdligent tutoring sysem (ITS). Condder a student learning to play chess from an ITS.
The gsudent will become frudrated and less likdy to enjoy playing if the computer wins
dl the time Also, if the computer plays perfectly dl the time, the sudent will not learn to
take advantage of opponents mistakes—a critical <ill in playing chess with human
players. Therefore, the ITS needs to be “porous’ and intentiondly make mistakes to play
down to the leved of the student. Indeed, the degree to which the ITS does this is can

change over time and in concert with monitoring te student’s progress via another TRIZ
principle, feedback.

2.3 Phase Transition (Principle 36)

Recent research in nonlinear dynamics has exposed an interesting feature of complex
adaptive sysems. It seems that in a dynamicd region just on the controllable sde of
chaos is a regime cdled the emergent regime in which sysems achieve the highest levels
of globad emergent behavior. Researchers in atificd life have explored this region and
coined the phrase “life a the edge of chaos’ to describe the sudden onset of complex and
sudtainable patterns in that region. Others have gpplied the same idea to naturd complex
adaptive sysems like biology, economics, and markets. Wolfram envisons usng the
phenomenon as awhole new gpproach to science.

Researchers liken the sudden shift of a sysem from controlled behavior to emergent
behavior to the change of phase in physca sysems—Ilike water changing from solid to
liquid as it melts. The degree of randomness in these systems is a key parameter. It seems
that given the right amount of randomness, a complex sysem can be induced to change
phase to the emergent regime in which its information processing cgpability is maximized
thereby dlowing the sysem as a whole to achieve more than the sum of its pats. This
certainly appliesto software systems.

2.4 Thermal Expansion (Principle 37)

Thermd expandon or contraction in physcd sysems involves a volume change as an
object is hested or cooled. A computer's memory Space is a combination of active
memory (in the CPU) and paged memory (maintained in some nearby storage medium
such as cache or virtud memory). The expanson and contraction of this resource, in
response to more or less processes requiring varying amounts of memory can be modeled
thermodynamicdly by attaching a metric andogous to temperature to the sysem which
would then model the computer’ s performance at agiven time.

2.5 Accelerated Oxidation (Principle 38)

In chemica systems, oxidation is the process of combining with oxygen thereby rdeasing
energy sored in the chemicd bonds. This reaction produces heet, a randomized quantity
of energy. Obvioudy, software does not bind with oxygen, but we can abdract the
oxidation principle to refer genericaly to the mixing of something with something d<e to
produce a randomized output. Sdted encryption comes to mind as an andog. An
encryption agorithm without a random component, “sdt’, run on some cleatext (say
user passwords) will aways produce the same encrypted output. A particular password
would adways be encrypted to the same dring on every computer running the unsated
encryption agorithm. If you crack the password once, you can evade security on every
other computer employing that adgorithm. However, if the encryption agorithm adds a
random factor, cdled “sdt”, into its cdculations, the encrypted text is vdid for only the

one meachine, dnce theoreticdly, dl other machines would <dt ther cdculaions
differently.

2.6 Inert Environment (Principle 39)

An inet environment is one that tends to not react with objects in the environment. A
logicd connotation is that an inert environment is a benign one. With this interpretation,
software test harnesses serve as an andog. In software development, it is often necessary
to test the software being developed in a smulated environment providing some, but not
dl, of the behavior of the actud environment the software will operate in. This atificid
congruct isgeneraly called a*“test harness”

Another andog is benchmark tests, often used to measure hardware and software
performance. The environment in which the benchmark is run is carefully controlled to

inulate the sysem from uncontrolled influences while retaining criticad characterigtics
and thusis dso an inert environment.

3 Summary of TRIZ Software Analogs

Combining the above anadogs to Red's andogs, and editing for space, results in the
condensed summary of TRIZ andogs for software shown in Table 1.

4 References

[1] Rea, K.C., TRIZ and Software 40 Principles Analogies, Part 1. The TRIZ Journal.
Sep, 2001. Internet: http:/AMwwwe.triz-journa .com/ archives/2001/09/efindex.htm

[2] Reg, K.C., TRIZ and Software 40 Principles Anaogies, Part 2. The TRIZ Journal.
Nov, 2001. Internet: http:/Aww.triz-journa .com/archives’2001/11/e/

1. Segmentation

a. Dividing an object into independent parts. Intelligent Agents

b. Make an object modular. C++ templates

c. Increase the degree of fragmentation. Confidential Objects
2. Extraction

Separate interfering or necessary parts Extraction of text in images
3. Local Quality

a. Change structure from uniform to non-uniform Non-uniform access algorithms

b. Make parts perform different functions Higher levels in a single index tree
4. Asymmetry

Change from symmetrical to asymmetrical. Load balancing, resource allocation
5. Consolidation

Make operations contiguous or parallel Threading, multitasking
6. Universality

Perform multiple functions; eliminate parts Personalization of user interface
7. Nesting

Place an object into another Classes within other classes
8. Counterweight

Counter weight with lift Shared objects in multiple contexts
9. Prior counteraction

Preload compensating counter tension Pre-processing
10. Prior action

Fully or partially act before necessary Pre-compiling
11. Cushion in advance

Prepare beforehand to compensate low reliability Fair scheduling in packet networks
12. Equipotentiality

In a potential field, limit position changes A transparent persistent object store
13. Do it in reverse

Invert actions Transaction rollback
14. Spheroidality

Replace linear parts with curved parts Circular abstract data structures
15. Dynamicity

Find an 0pt|ma| operating condition Dynamic Linked Libraries (DLLs)
16. Partial or excessive action

Use “slightly less” or “slightly more” Perturbation analysis
17. Transition into new dimension

Move in more dimensions Multi-layered assembly of classes
18. Mechanical Vibration

Oscillation Change the rate of an algorithm
19. Periodic Action

Periodic or pulsating actions Scheduling algorithms
20. Continuity of useful action

a. Continue actions
b. Eliminate all idle or intermittent actions

Utilizing processor at full load
Eliminatel blocking processes

Table 1a— Summary of TRIZ Andogs for Software (1-20)

21.

Rushing through
Conduct a process at high speed

Burst-mode transmission

22.

Convert harm into benefit
Eliminate the primary harmful action

Bottleneck DDOS zombies

23. Feedback

Introduce feedback Feedback improving iterations
24. Mediator

Use an intermediary XML-based view generation
25. Self-service

Performing auxiliary functions Periodic auto-update
26. Copying

Use simpler and inexpensive copies Perform a shallow copy
27. Dispose

Use multiple inexpensive objects Rapid prototyping
28. Replacement of Mechanical System

Replace mechanical means

Voice recognition/dictation

29.

Pneumatic or hydraulic construction
Use inflatable gas or liquid parts

Dynamically allocated data structures

30.

Flexible films or thin membranes
Isolate the object from the environment

Wrapper objects

31.

Porous materials
Make an object porous

Intelligent tutoring systems

32.

Changing the color
Change the external view (transparency)

Transparency layers

33.

Homogeneity
Use same material

Container objects

34.

Rejecting and regenerating parts
a. Discard portions of an object
b. Restore consumable parts

Garbage collection
Transaction rollback

35.

Transformation properties
Change the degree or flexibility

Multi-role objects

36.

Phase transition
Phase transition phenomenon

Emergent behavior

37.

Thermal expansion
Use thermal expansion or contraction

System memory

38.

Accelerated oxidation
Use oxygen-enriched air

Salted encryption

39.

Inert Environment

Replace normal environment with an inert one

Test harness

40.

Composite materials
Use composite (multiple) materials

Composite objects

Table 1b — Summary of TRIZ Andogs for Software (21-40)

