
TRIZ and Software Fini

Ron Fulbright
Director, Information Management & Systems

University of South Carolina Spartanburg
Spartanburg, SC 29302

rfulbright@uscs.edu

1 Introduction

In [1] and [2], Rea discusses software engineering analogs to Altshuller’s 40 principles of
innovation. However, Rea did not list analogs for principles: 29 (pneumatic/hydraulic
construction), 31 (porous materials), 36 (phase transition), 37 (thermal expansion), 38
(accelerated oxidation), and 39 (inert environment). This article completes Rea’s list by
offering software analogs for these six principles and summarizes all 40 software TRIZ
principles.

2 Additional Software Analogs

2.1 Hydraulic/Pneumatic Construction (Principle 29)

For mechanical systems, this principle applies to variable-volume parts inflated with
liquid or gas. In software, the analog of a container with varying volume is a dynamically
allocated data structure. It is often unknown at compile time how much data a program
will need to handle. With dynamically allocated data structures, as more elements are
required, the data structure’s memory footprint expands and then contracts as elements
are deleted.

2.2 Porous Materials (Principle 31)

We like to think that our software produces the correct output at all times. However,
sometimes this is not always desirable. The suggestion here is that “porous material” be
interpreted as intentionally making a software application imperfect. An example is an
intelligent tutoring system (ITS). Consider a student learning to play chess from an ITS.
The student will become frustrated and less likely to enjoy playing if the computer wins
all the time. Also, if the computer plays perfectly all the time, the student will not learn to
take advantage of opponents’ mistakes—a critical skill in playing chess with human
players. Therefore, the ITS needs to be “porous” and intentionally make mistakes to play
down to the level of the student. Indeed, the degree to which the ITS does this is can

change over time and in concert with monitoring the student’s progress via another TRIZ
principle, feedback.

2.3 Phase Transition (Principle 36)

Recent research in nonlinear dynamics has exposed an interesting feature of complex
adaptive systems. It seems that in a dynamical region just on the controllable side of
chaos is a regime called the emergent regime in which systems achieve the highest levels
of global emergent behavior. Researchers in artificial life have explored this region and
coined the phrase “life at the edge of chaos” to describe the sudden onset of complex and
sustainable patterns in that region. Others have applied the same idea to natural complex
adaptive systems like biology, economics, and markets. Wolfram envisions using the
phenomenon as a whole new approach to science.

Researchers liken the sudden shift of a system from controlled behavior to emergent
behavior to the change of phase in physical systems—like water changing from solid to
liquid as it melts. The degree of randomness in these systems is a key parameter. It seems
that given the right amount of randomness, a complex system can be induced to change
phase to the emergent regime in which its information processing capability is maximized
thereby allowing the system as a whole to achieve more than the sum of its parts. This
certainly applies to software systems.

2.4 Thermal Expansion (Principle 37)

Thermal expansion or contraction in physical systems involves a volume change as an
object is heated or cooled. A computer’s memory space is a combination of active
memory (in the CPU) and paged memory (maintained in some nearby storage medium
such as cache or virtual memory). The expansion and contraction of this resource, in
response to more or less processes requiring varying amounts of memory can be modeled
thermodynamically by attaching a metric analogous to temperature to the system which
would then model the computer’s performance at a given time.

2.5 Accelerated Oxidation (Principle 38)

In chemical systems, oxidation is the process of combining with oxygen thereby releasing
energy stored in the chemical bonds. This reaction produces heat, a randomized quantity
of energy. Obviously, software does not bind with oxygen, but we can abstract the
oxidation principle to refer generically to the mixing of something with something else to
produce a randomized output. Salted encryption comes to mind as an analog. An
encryption algorithm without a random component, “salt”, run on some cleartext (say
user passwords) will always produce the same encrypted output. A particular password
would always be encrypted to the same string on every computer running the unsalted
encryption algorithm. If you crack the password once, you can evade security on every
other computer employing that algorithm. However, if the encryption algorithm adds a
random factor, called “salt”, into its calculations, the encrypted text is valid for only the

one machine, since, theoretically, all other machines would salt their calculations
differently.

2.6 Inert Environment (Principle 39)

An inert environment is one that tends to not react with objects in the environment. A
logical connotation is that an inert environment is a benign one. With this interpretation,
software test harnesses serve as an analog. In software development, it is often necessary
to test the software being developed in a simulated environment providing some, but not
all, of the behavior of the actual environment the software will operate in. This artificial
construct is generally called a “test harness.”

Another analog is benchmark tests, often used to measure hardware and software
performance. The environment in which the benchmark is run is carefully controlled to
insulate the system from uncontrolled influences while retaining critical characteristics
and thus is also an inert environment.

3 Summary of TRIZ Software Analogs

Combining the above analogs to Rea’s analogs, and editing for space, results in the
condensed summary of TRIZ analogs for software shown in Table 1.

4 References

[1] Rea, K.C., TRIZ and Software 40 Principles Analogies, Part 1. The TRIZ Journal.
Sep, 2001. Internet: http://www.triz-journal.com/ archives/2001/09/e/index.htm

[2] Rea, K.C., TRIZ and Software 40 Principles Analogies, Part 2. The TRIZ Journal.
Nov, 2001. Internet: http://www.triz-journal.com/archives/2001/11/e/

1. Segmentation
 a. Dividing an object into independent parts.
 b. Make an object modular.
 c. Increase the degree of fragmentation.

Intelligent Agents
C++ templates
Confidential Objects

2. Extraction
 Separate interfering or necessary parts

Extraction of text in images

3. Local Quality
 a. Change structure from uniform to non-uniform
 b. Make parts perform different functions

Non-uniform access algorithms
Higher levels in a single index tree

4. Asymmetry
 Change from symmetrical to asymmetrical.

Load balancing, resource allocation

5. Consolidation
 Make operations contiguous or parallel

Threading, multitasking

6. Universality
 Perform multiple functions; eliminate parts

Personalization of user interface

7. Nesting
 Place an object into another

Classes within other classes

8. Counterweight
 Counter weight with lift

Shared objects in multiple contexts

9. Prior counteraction
 Preload compensating counter tension

Pre-processing

10. Prior action
 Fully or partially act before necessary

Pre-compiling

11. Cushion in advance
 Prepare beforehand to compensate low reliability

Fair scheduling in packet networks

12. Equipotentiality
 In a potential field, limit position changes

A transparent persistent object store

13. Do it in reverse
 Invert actions

Transaction rollback

14. Spheroidality
 Replace linear parts with curved parts

Circular abstract data structures

15. Dynamicity
 Find an optimal operating condition

Dynamic Linked Libraries (DLLs)

16. Partial or excessive action
 Use “slightly less” or “slightly more”

Perturbation analysis

17. Transition into new dimension
 Move in more dimensions

Multi-layered assembly of classes

18. Mechanical Vibration
 Oscillation

Change the rate of an algorithm

19. Periodic Action
 Periodic or pulsating actions

Scheduling algorithms

20. Continuity of useful action
 a. Continue actions
 b. Eliminate all idle or intermittent actions

Utilizing processor at full load
Eliminatel blocking processes

Table 1a – Summary of TRIZ Analogs for Software (1-20)

21. Rushing through
 Conduct a process at high speed

Burst-mode transmission

22. Convert harm into benefit
 Eliminate the primary harmful action

Bottleneck DDOS zombies

23. Feedback
 Introduce feedback

Feedback improving iterations

24. Mediator
 Use an intermediary

XML-based view generation

25. Self-service
 Performing auxiliary functions

Periodic auto-update

26. Copying
 Use simpler and inexpensive copies

Perform a shallow copy

27. Dispose
 Use multiple inexpensive objects

Rapid prototyping

28. Replacement of Mechanical System
 Replace mechanical means

Voice recognition/dictation

29. Pneumatic or hydraulic construction
 Use inflatable gas or liquid parts

Dynamically allocated data structures

30. Flexible films or thin membranes
 Isolate the object from the environment

Wrapper objects

31. Porous materials
 Make an object porous

Intelligent tutoring systems

32. Changing the color
 Change the external view (transparency)

Transparency layers

33. Homogeneity
 Use same material

Container objects

34. Rejecting and regenerating parts
 a. Discard portions of an object
 b. Restore consumable parts

Garbage collection
Transaction rollback

35. Transformation properties
 Change the degree or flexibility

Multi-role objects

36. Phase transition
 Phase transition phenomenon

Emergent behavior

37. Thermal expansion
 Use thermal expansion or contraction

System memory

38. Accelerated oxidation
 Use oxygen-enriched air

Salted encryption

39. Inert Environment
 Replace normal environment with an inert one

Test harness

40. Composite materials
 Use composite (multiple) materials

Composite objects

Table 1b – Summary of TRIZ Analogs for Software (21-40)

