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Introduction 
 
Can TRIZ be applied to the design and creation of software appears to be a question 
being asked by a growing number of companies. This article sets out to explore the field 
and make suggestions as to what a ‘TRIZ for Software’ toolkit might look like. Given that 
this author is set to publish a book on the subject before the end of the year, it seems 
likely to assume that the suggestion of the article will be, yes, TRIZ can be applied to 
software. Given some of the past discussions of TRIZ and software, however, it seems 
that the positive answer is not such an obvious one. Ikovenko spoke around the subject at 
the TRIZ Centrum conference in 2003 (Reference 1), and basically concluded that since 
software development was still at an early stage in its evolution (‘software development is 
an art rather than a science’) that it was not yet likely to be amenable to treatment by 
TRIZ. In his usual forthright way, Karasik (Reference 2) was more vehement in his 
dismissal of the possibilities of applying TRIZ to software problems (‘being a computer 
scientist and a software engineer, I can assure Mr. Retseptor that 40 principles are not 
applicable to software engineering’). The spur to Karasik’s argument was the earlier 
published list of 40 Inventive Principles for Software by Rea (Reference 3). Rea’s analysis 
of the situation was that the 40 Inventive Principles – or most of them at least – could be 
observed in the design of software.  
 
Observing the apparent use of Inventive Principles in already solved software problems, 
however, is markedly different from actually using them to solve a problem that has not yet 
been solved. As of today in fact, there are still no satisfactory published instances of a real 
software problem being successfully solved using either the Principles or TRIZ. So where 
does that leave us? 
 
We have been teaching a ‘TRIZ for Software’ workshop to in-house clients willing to 
experiment with the possibilities of TRIZ for over 18 months now. Based on the 
experiences of these workshops and the ongoing extensive analysis of patents conducted 
during the programme of research to update of TRIZ, it is our firm belief that TRIZ has got 
something of significance to offer to software engineers. What we can already see, 
however, is that the bias and focus of the various TRIZ tools is markedly different in the 
software context than it is in other fields of application. 
 
In order to explore that bias, however, we first need to explore the context and bounds of 
what is and what is not a ‘software’ problem. A good way to begin this exploration, then, is 
to examine the TRIZ (modified) Law Of System Completeness (Reference 4) and see how 
this might be applied to software systems: 
 



 
 
 
 
 
 
 
 
 
 
 
 

 
    

Figure 1: Law Of System Completeness (from Reference 4) 
 
The first question that emerges after thinking about this model is ‘is it applicable to 
software?’ The answer is yes. As per the Stafford Beer Viable System Model (Reference 
5), we can recursively apply the model at several hierarchical levels. At the software 
subroutine level, for example, we might think of the ‘engine’ as the algorithms contained in 
the routine; the transmission as the subroutine call; the tool as the outputs calculated by 
the routine and the control, the various lines of code within the software that make sure 
things happen in the right sequence and with the desired logic. The ‘field’ is a slightly 
bigger stretch, but if we think about it as a ‘communication field’ then the logic remains 
intact.  The same analogies can be applied at progressively higher hierarchical levels in 
which we look at systems from the perspective of operating system, language, etc. At 
whatever level we look, ultimately the ‘system’ has to interface with something outside the 
system (‘S2’ in this case). This thing outside the system may be another routine or another 
program or the user. 
 
The main reason for starting with this (admittedly abstract) model is that we soon notice 
something different about software relative to conventional technical systems. In a 
technical or indeed business system it is frequently the case that when we start asking 
ourselves whether the relationships between the different parts of a system are ‘effective’, 
we find ourselves answering that, no they are not. Insufficient, excessive and harmful 
actions are often to be found in abundance in most practical systems. In software, 
however, the idea of, say, an insufficient relationship between two subroutines is difficult 
to imagine. Attempts to construct a function analysis model of the insides of a piece of 
code and we are likely to end up with a picture in which there are no harmful, excessive or 
insufficient actions; in programming terms, we get what we write, and it either works or it 
doesn’t; there is little or no middle ground. The only practical time, then, when we are 
likely to find ourselves identifying functional models containing negative relationships is 
when we reach the interface with the outside world. One piece of code does not interact 
‘inadequately’ with another; but a piece of code very frequently interacts inadequately with 
a piece of hardware or with a user. 
 
The main implication of this phenomenon is that the construction of function analysis 
models is of limited value in defining improvement opportunities (they will, of course, still 
be very helpful in enabling us to get the intra-block communication logic right in the first 
place). ‘Problems’ only start to occur when we examine links between the software and 
the outside world. This is likely to mean that we are going to be thinking about TRIZ as a 
problem solving tool at a somewhat different level from the detailed start point of a 
function analysis model. 
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Pillars      
 
With this thought in mind, what then happens when we begin to explore some of the other 
pillars of TRIZ? Figure 2 illustrates the list of seven pillars found in the business version of 
TRIZ (Reference 6). (Note here that the increase relative to the five this author suggests 
exist in technical TRIZ emerges due to the increasing connection between TRIZ and other 
philosophies; we continue to call the method ‘TRIZ’ as a convenient label, but our 
meaning is somewhat evolved from what may be considered to be ‘classical’ TRIZ). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Law Seven Pillars Of ‘TRIZ For Software’ 
 
Let us explore each of these pillars in the context of their possible relevance to a software 
context:  
 
IDEALITY: all successful innovations evolve in a direction of increasing ideality – more 
benefits; less cost, less harm. Evolution towards an ideal final result occurs through a 
series of patterns that are repeated across different industries. Absolutely relevant to the 
design and evolution of software – many discontinuous evolution trends can be observed 
(see later Trends section), and the concept of ‘self-x’, as in software that ‘writes itself’ is a 
goal that many are actively working to achieve. 
 
EMERGENCE: a pillar introduced into ‘TRIZ’ in the work of this author to make the method 
relevant to business situations. Just about all business problems involve complex systems 
and it is thus any appropriate solution generation strategy ought by rights to take 
complexity issues into consideration. While not all software systems are complex, their 
interfaces with the outside world increasingly are. The increasing prevalence of fuzzy-
logic, genetic algorithms and agent-based software systems thus form a link to complex 
systems that cannot be ignored by any software problem solving method. 
 
FUNCTION: customers primarily buy functions (benefits), therefore producers should 
focus on the function delivered by the products and services they deliver and not just the 
product itself. If customers find a better way of achieving a function, they will stop buying 
your product or service. Also relevant in the software context; software exists to deliver a 
useful function, either to other pieces of software or to a piece of hardware or a human. 
 
CONTRADICTION: systems evolve in the direction of increasing ideality through the 
successive emergence and resolution of conflicts and contradictions. Evolution is 
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therefore fundamentally discontinuous in nature. The contradiction-eliminating strategies 
of others have been mapped and can be used to accelerate the evolution of any system. 
We may also observe the presence of contradictions and contradiction elimination as a 
primary driver of software evolution. Contradictions tend to occur at the interfaces between 
software and the outside world rather than wholly ‘within’ the software. 
 
RESOURCES: anything in or around a system that is not being used to its maximum 
potential is a resource. Seen to be relevant in the context of relationships between the 
software and the outside world, but somewhat less meaningful as a concept when we 
think about the software itself. Especially in a world in which Moore’s Law continues to 
apply. Beyond the initial overhead associated with actually creating the software, the 
recurring costs are as close to zero as can be imagined, and so the importance of 
effective use of resources becomes less and less important. We note, however, that 
programmers take up considerable amounts of unnecessary memory space when 
constructing a piece of software simply because memory is cheap and it is easier to write 
a bulky working algorithm than a compact elegant one. There is, in other words, 
considerable untapped potential in almost all software systems. See also the evolution 
potential discussion later in this article. 
 
SPACE/TIME/INTERFACE: the human brain is subject to an effect known as 
psychological inertia; it fools itself into looking at situations from one specific angle. When 
we are looking to improve a system, we need to be able to change our perspective of it. 
Perspective shifts can involve physical (or virtual) space, temporal issues, or the way in 
which different elements of a system interface and relate to one another. This pillar is as 
important in software design as in the physical world. Perhaps more so since there is a 
strong tendency for many software engineers to operate in a closed virtual world largely 
divorced from the interface with actual users. Tools to help software engineers see their 
world from different perspectives (e.g. through the 9-Windows tool) are considered to be 
extremely relevant. 
 
RECURSION: another pillar not in classical TRIZ, but found in ‘business TRIZ’ (Reference 
6 again). Recursion is an idea emerging from Stafford Beer’s cybernetics research and 
elsewhere, and relates to the phenomenon whereby certain system phenomenon repeat 
at different hierarchical levels. The afore-mentioned law of system completeness is one 
such system that follows the idea of recursiveness. 
 
 
All of these topics are covered in more detail in the forthcoming ‘TRIZ For Software 
Engineers’ book (Reference 7). Given the rather more limited scope of this article, let us 
switch now from the abstract to the specific and begin to look at some of the problem 
definition and solution generation tools that might be found in a TRIZ for software toolkit. 
We will begin with an examination of the possibilities of a contradiction elimination 
methodology: 
 
 
Solving Software Contradictions 
 
The classical TRIZ Contradiction Matrix has been the subject of much updating in recent 
times, through first the publishing of ‘Matrix 2003’ (Reference 8) and then more recently a 
matrix for business problems (Reference 6). Despite moving several steps towards 
making it relevant for the problems faced by software engineers and finding many 
software patents that had something to contribute to the construction of the tool, Matrix 
2003 contains much that was considered off-putting to software users. Hence in 2003 we 
decided that it was necessary to create a bespoke matrix for software problems. This 



matrix has now been completed, and will become publicly available for the first time when 
the ‘TRIZ for Software Engineers’ book is published. By way of a taster, however, Figure 3 
illustrates the parameters that make up the sides of the new Matrix.  
 

Size (Static) 
Size (Dynamic) 
Amount of Data 
Interface 
Speed 
Accuracy 
Stability 
Ability to Detect/Measure 
Loss of Time 
Loss of Data 
Harmful Effects Generated By System 
Adaptability/Versatility 
Compatibility/Connectability 
Ease Of Use 
Reliability/Robustness 
Security 
Aesthetics/Appearance 
Harmful Effects On System 
System Complexity 
Control Complexity 
Automation 

 
   Figure 3: 21 Parameters Of The New Software Matrix 

 
The method of operation of the new Matrix is exactly the same as that used in the other 
Matrices; the user has to first identify what they wish to improve in their system, then what 
is it that is preventing them from making the improvement. From here it is then necessary 
to translate the specifics of the conflict pair into a pair from the Matrix parameter list that 
most closely matches those specifics. From there, the Matrix will reveal the most likely 
Inventive Principles used by others to successfully challenge that conflict pair. The new 
Matrix represents the outcome of studying around 40,000 software patents and design 
solutions. The number is limited by the fact that currently only the US is granting software 
patents (many of which, when we examine them, appear to have a very low degree of 
novelty), and that the methods used in non-patented breakthrough designs are usually 
hidden inside source code that is invisible to the outsider. 
 
A pair of simple examples, however, should serve the dual purpose of demonstrating how 
the Matrix was compiled and how a user might make use of the tool: 
 
US6,785,819 
This patent was granted to Mitsubishi Denki Kabushki Kaisha on August 31 2004 (actually 
some time after the Matrix work was completed). The background to the patent as 
described in the disclosure is as follows:- 
 
“Recently, a computer system that uses LAN is commonly being adopted in organizations. 
Commonly, a plurality of LANs located in various locations in an organization's interoffice network 
are connected altogether to form an intranet. Extending further, an extranet which includes the 
organization's allied companies to form a network altogether is also becoming widespread.  
There are various ways to connect a plurality of LANs located in various locations. To give one 



example, there is a case of using a low-cost internet instead of a leased line. In this case, access 
from outside should be regulated, so a firewall is generally set at a boundary of outside and inside 
of the network. This helps to increase the safety factor inside the LANs. The firewall is a technique 
which only permits access from outside to a specific location or to a specific application of the 
LAN. An example of this technique is disclosed in Japanese unexamined patent publication HEI 7-
87122. Specifically, the firewall is mostly used in a system which only allows SMTP (simple mail 
transfer protocol), which is an electronic mail transfer protocol, to pass through. In this case, only 
an electronic mail message can pass through the firewall. As other examples, there are a system 
which allows HTTP (hyper text transfer protocol) to pass through, which is a data communication 
protocol of WWW (world wide web), a system which allows a CORBA (common object request 
broker architecture) communication protocol IIOP (internet inter-ORB protocol) to pass through, 
and a system which allows a communication protocol such as RMI prepared by JAVA processing 
system to pass through. In a network computer system, services under a LAN environment such 
as file sharing, printing to common printer, or use of CPU server cannot be adopted because of the 
firewall. Accordingly, in cases when one wishes to obtain a certain data or a program from other 
location, then the one can only rely on someone at the other location to transmit a required data or 
the program using an independent channel, or the one can only rely on a method of mailing media 
such as a tape”. 
 
The problem thus identified by the inventors is a conflict between parallel desires to 
improve data transfer capability and maintain security. Translating these specific 
requirements into the terms of the software Matrix will then reveal the conflict pair 
illustrated in Figure 4. 
 

 
   

 Figure 4: US6,785,819 Conflict Translated Into The Terms Of The Software Matrix 
(picture from CREAX Innovation Suite software) 

 
The numbers at the right hand side of the figure relate to the Inventive Principles used by 
other software engineers to successfully challenge the connectability-security conflict. It is 
now up to us to translate these generic solution directions into something that might help 
us to solve our specific problem. The inventors of US6,785,819, for example used a 
software agent to achieve a solution: 
 
According to one aspect of the present invention, an agent method for transferring an agent inside 
a network system including a first computer system having an access control unit which allows 
access in case of meeting a pre-determined communication condition and a second computer 
system, comprises steps of: authenticating the second computer system for transmitting the agent, 
and transmitting the pre-determined communication condition of the first computer system to the 
authenticated second computer system; receiving and storing the pre-determined communication 
condition, creating the agent, and transmitting the agent according to the pre-determined 
communication condition by the second computer system; and receiving the agent via the access 
control unit and executing the agent by the first computer system. 
 
In other words, the inventors used a combination of Principle 24 (‘Intermediary’) and 25 
(‘Self-Service’ - Make an object serve or organise itself by performing auxiliary helpful 
functions’). 
 
 
US6,789,097 
This patent (‘Real-time method for bit-reversal of large size arrays’) was granted to Tropic 
Networks Inc on September 7 2004. Hence it too was granted after work on the new 



Matrix was completed. The invention disclosure abstract does a good job of describing 
both the conflict resolved by the inventors and the strategy they used to achieve the 
solution:- 
A digital signal processor DSP for bit-reversal of a large data array of a size has a direct memory 
access (DMA) controller for performing in-place bit reversal routines on an external memory during 
a first stage, and a central processing unit (CPU) for swapping small sub-arrays on internal 
memory in a second stage. The two stage method according to the invention importantly reduces 
the real-time implementation for sorting large size data arrays on uni-processor DSP platforms, by 
extensively using the external memory and avoiding a random access to the internal memory. As 
well, the invention provides for improved dense integration and reduced costs when used in dense 
wavelength division multiplexing (DWDM) systems.  

The basic conflict under consideration here involves time and amount of memory. If we 
map these onto the Matrix we will get the following: 

 
 

Figure 5: US6,785,819 Conflict Translated Into The Terms Of The Software Matrix 
 
Again we see a good match between the recommendations made by the Matrix and the 
strategy used by the inventor – in this case specifically the use of a Prior Action (Principle 
10) and an external memory (Principle 24). 
 
Reverse engineering an existing solution is, of course, not much of a demonstration of the 
capabilities of the Inventive Principles. The only real answer to this problem is to actually 
begin to use the Principles to work on a real live conflict. Such a task is beyond the scope 
of this article, since our aim is rather to overview the broad applicability of TRIZ to 
software problems. In doing this, then, it is perhaps important to next move on to look at 
the Inventive Principles in a little more detail.  
 
 
Inventive Principles For Software 
 
The first thing to say on the subject of the Inventive Principles is that our research has 
confirmed the existence of the same 40 Principles as are found in classical TRIZ. As was 
the case with the conversion from technical to management Principles, we have had to 
alter some of the terminology of the Principle descriptions to better suit the software 
context, but beyond that, they have stayed the same. No software engineers according to 
our analysis have identified inventive strategies that do not fit into the existing Principles 
framework. This is in itself a useful finding. The list of Principles featuring the modified 
titles is illustrated in Figure 6 below: 
 
The TRIZ for Software research has generated a comprehensive description of each 
Principle along with a cluster of software examples for each. The main aim of such lists, as 
with Rea’s list (Reference 3) and other lists of Principles in other domains, is to provide a 
list of examples to explain the meaning of each Principle, in the hope that once users can 
begin to understand what a Principle is about they will begin to be able to connect it to the 
problem they are working with. As ever with TRIZ, in the final analysis the jump from the 
generic solutions offered by the Inventive Principles to a specific solution to a specific 
software problem is going to require some serious thinking. In software as in other fields, 
‘systematic’ does not necessarily mean ‘easy’. 
 



Also worth noting in this regard is the additional finding from our research that the majority 
of software problem solutions appear to merge ideas from several Principles. Hence a 
solution generation process in which solutions are first generated from individual Principle 
triggers, and then subsequently combined to form stronger solutions is at the very least 
‘highly recommended’; very few breakthrough software solutions, in our experience to 
date, look as though they will come from one idea generated from one single Inventive 
Principle. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: 40 Inventive Software Principles 
(green titles highlight text changes relative to original list) 

 
 
Looking beyond the basic Principles, then, is the possibility of analyzing which Principles 
are being used more than others: 
 
 
Frequency Sequence Of The Software Inventive Principles 
 
The analysis described here is based on the same 40,000 software solutions used to 
compile the software Matrix. The method of presenting our findings is exactly the same as 
was recently used for the updated technical and new business Matrices. The software 
Principle frequency sequence, then is as follows:  
 

 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 
0  10 3 24 13 2 25 35 7 1 4 

+10 37 15 28 17 19 5 32 40 6 23 
+20 26 14 9 12 34 31 11 22 29 16 
+30 39 21 27 33 20 18 30 8 36 38 

 
Figure 7: 40 Inventive Software Principle Frequency Sequence 

 
Hence, we see that Inventive Principle 10 is the most commonly used; Principle 3, the 
second most common, and so on through to Principle 38 down in 40th place. 
 
The list is also reproduced in a slightly different format in the fourth column of Table 1 
below. The Table also reproduces the ranking of Principles from Matrix 2003 (see 

1.  Segmentation
2.  Extraction
3.  Local Quality
4.  Asymmetry
5.  Combination
6.  Universality
7.  ‘Nested Doll’
8.  Counterbalance
9.  Prior Counter-Action

10.  Prior Action
11.  Prior Cushioning
12.  Remove Tension
13.  ‘The Other Way Round’
14.  Loop
15.  Dynamics
16.  Slightly Less/Slightly More
17.  Another Dimension
18.  Vibration
19.  Periodic Action
20.  Continuity of Useful Action

21.  Hurrying
22.  ‘Blessing in Disguise’
23.  Feedback
24.  Intermediary
25.  Self-Service
26.  Copying
27.  Cheap/Short Living
28.  Another Sense
29.  Fluidity
30.  Thin & Flexible
31.  Holes
32.  Colour Changes
33.  Homogeneity
34.  Discarding and Recovering
35.  Parameter Changes
36.  Paradigm Shift
37.  Relative Change
38.  Enrich
39.  Calm
40.  Composite Structures



Reference 9 for a more detailed analysis of Matrix 2003 versus classical placings), and 
then the relative changes between business and technical Principles sequences.   
 
Inventive 
Principle 

Classical 
TRIZ  

Ranking 

Matrix 
2003 

Ranking 

Software 
Matrix 

Ranking 

Change 
(Classical-
Software) 

Change 
(Matrix 2003-

Software) 

1 3 7 9 -6  -2 
2 5 5 5 - - 
3 12 2 2 +10 - 
4 24 10 10 +14  - 
5 33 12 16 +17  -4 
6 20 27 19 +1  +8 
7 34 17 8 +26  +9 
8 32 37 38 -6  -1 
9 39 24 23 +16  +1 

10 2 8 1 +1 +7 
11 29 39 27 +2 +12 
12 37 19 24 +13 -5 
13 10 3 4 +6 -1 
14 21 15 22 -1 -7 
15 6 14 12 -6 +2 
16 16 28 30 -14 -2 
17 19 9 14 +5 -5 
18 8 25 36 -28 -11 
19 7 11 15 -8 -4 
20 40 40 35 +5 +5 
21 35 32 32 +3 - 
22 22 36 28 -6 +8 
23 36 33 20 +16 +13 
24 18 6 3 +15 +3 
25 28 13 6 +22 +7 
26 11 23 21 -10 +2 
27 13 35 33 -20 +2 
28 4 4 13 -9 -9 
29 14 26 29 -15 -3 
30 25 22 37 -12 -15 
31 30 16 26 +4 -10 
32 9 21 17 -8 +4 
33 38 38 34 +4 +4 
34 15 31 25 -10 +6 
35 1 1 7 -6 -6 
36 27 30 39 -12 -9 
37 26 20 11 +15 +9 
38 31 34 40 -9 -6 
39 23 29 31 -8 -2 
40 17 18 18 -1 - 

 
Table 1: Comparison Of Classical, Matrix 2003 and New Software Matrix 

 
The ‘change’ columns indicates that there have been some quite significant shifts that 
have taken place between the classical matrix and the new Software Matrix. To a lesser 
extent there have also been some shifts relative to Matrix 2003. The biggest ‘risers’ up the 
sequence list perhaps offer the most interesting insight into the differences between 
conflict resolution strategies for software and technical problems: The rises in the use of 
Principles 11 (‘Beforehand Cushioning’) and 23 (‘Feedback’) are both an indication of an 



industry still in the early phases of its development. The rises seen for Principles 37 
(‘Relative Change’ in our software application) and 7 (‘Nested Doll’) are more indicative of 
the ease with which these two strategies may be deployed in a software context. Nesting 
in particular can be something that adds considerable complexity in a physical system, but 
in a piece of software use of the strategy merely requires the creation of additional lines of 
code. The rise of the Relative Change Principle is likewise due to the ease with which this 
strategy can be deployed in a digital environment. 
 
Regarding the Principles falling down the list, it seems clear that there are certain of the 
Principles that are more difficult to interpret in the software context. Big fallers include 
Principles 18 (‘Vibration’), 30 (‘Flexible Shells And Thin Films’), 31 (‘Porous Materials or 
‘Holes’) and 36 (‘Phase Transition’). Whilst software examples all of these Principles can 
be found, their existence is rare and sometimes the imagination stretch required is quite 
high. Detailed analysis of the priority sequence illustrated in Figure 7 will, in fact, show that 
there is a big gap in frequency of use of the top 16 Principles compared to the 24 below 
them.    
 
 
Ideality/Trends 
 
Moving on from Contradictions, another important tool in the software context appears to 
be the Ideality and Trends parts of TRIZ. A big part of the research underlying the TRIZ for 
Software work has examined patterns that exist in software evolution as systems jump 
discontinuously from one way of doing things to another. This is because we hope that 
knowledge of such trends will allow us to considerably accelerate the evolution of existing 
systems in the same way that is beginning to happen with the technical systems we are 
involved with. 
 
To date, we have uncovered 24 discontinuous trends. As with the technical and business 
trends, we have found a broad split of these trends into physical, temporal and interfacial 
categories – Figure 8. a Glance at the trend titles shown in the figure will indicate a fair 
degree of connection with the technical and business trends. Detailed analysis of these 
trends, however, reveals some interesting differences (Reference 7).   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8: Current List Of Discontinuous Software Evolution Trends  
 

TEMPO
RAL

SPACIAL

INTERFACE

Segmentation
Surface Segmentation
Asymmetry
Increasing Use of Dimensions

Mono-Bi-Poly (Similar) – Interface 
Mono-Bi-Poly (Various) – Interface
Mono-Bi-Poly (Inc.Diff.) – Interface 
Use of Senses
Use of Colour
Design Point
Design Process
Design for Robustness
Degrees of Freedom
Reducing System Complexity
Connections
Feedback & Control
Human Involvement/Autopoeisis
Customer Expectation

Action Co-ordination
Rhythm Co-ordination
Dynamization
Non-Linearity
Mono-Bi-Poly (Sim) – Time
Mono-Bi-Poly (Var) – Time



Also present in the list are trends that have little or no corresponding equivalent in the 
technical or business worlds. Amongst these is a trend we have labeled ‘Design Process’. 
The basic form of this trend is illustrated in Figure 9 below. In many ways, this trend is 
connected to the Capability Maturity Model (CMM, Reference 10) used by many as a 
standard in the software industry.  
 
 
 
 
 
 
 
 

Figure 9: Typical Software Evolution Trend – Design Process 
 
As with our technical and business trends, we have found it useful to also employ the 
evolution potential concept (References 4, 6 and 11) as a means of comparing a given 
software system against a global maturity scale. Figure 10 illustrates a typical example. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10: Typical Evolution Potential Radar Plot For Software Systems 
 
Again, in common with technical and business systems, we see certain sectors of the 
industry are more advanced in certain trend directions than others. Hence we see a time 
where there are a number of ‘low-hanging fruit’ benefits to be obtained by the first users of 
the TRIZ trends, by taking known advances in one part of the industry and deploying them 
in another. 
 
 
Self-X 
 
Already we see many of the discontinuous software trends shown in Figure 8 clearly 
heading towards extensive use of ‘self-x’ (Reference 12). Autopoeisis in software systems 
– i.e. self-repairing, self-updating, self-reproducing – is already common in several sectors 
of the industry. The speed at which software systems continue to evolve relative to the 
technical systems bound by the limitations of the physical world means that consideration 
of the ‘idea final result solution’ is an essential in the vast majority of all software problem 
definition exercises.  

Trial and
Error

Process
Mapping

Multiple
Processes

Process of 
Processes



Other Tools 
 
Looking beyond contradictions and trends, examination of the remaining TRIZ tools and 
testing their applicability in software applications reveals a number of possibles. Rea has, 
for example, speculated on the applicability of the S-Field tool in software applications 
(Reference 13). Our own experience with this tool, on the other hand, given the earlier 
discussion about the presence or otherwise of insufficient, excessive or harmful 
relationships between different parts of a software system, is that it is a step too far for 
most software engineers. While we believe that the Inventive Standards have something 
to offer in the software context, we consider that it is better to integrate these solution 
generation triggers into the other tools. Thus, to take a single example, an Inventive 
Standard recommending the incorporation of an ‘intermediary substance or field’ overlaps 
considerably with Inventive Principle 24, and so as long as the Principle 24 definition is 
modified appropriately we can effectively make the stand-alone Inventive Standard 
redundant. 
 
The discussion of other tools, however, cannot end without some discussion of the 
Subversion Analysis tool. Alongside the Contradictions tool, we believe this is probably the 
most important TRIZ tool in the software engineers’ armoury at this point in time. Put 
simply, there are still a very large proportion of software systems in the world that are 
anything but ‘robust’. At least from the layman users’ point of view. Designing robustness 
into increasingly complex software systems is an undoubtedly significant and growing 
challenge to software engineers. Although the form of the subversion analysis tool has 
had to change somewhat from the traditional technical form, the essential elements 
remain intact when we look to use the method in the software context. The key 
Subversion Analysis question, ‘how can we destroy this system?’ for example remains as 
if not more relevant in a software application than it does for any technical system. 
Reference 7 pays particular attention to the development and use of subversion analysis 
techniques in the software context. 
 
 
Conclusions 
 
Contrary to the view of Ikovenko (Reference 1 again), we believe the evidence from the 
patent database and elsewhere would suggest that the world of software is more science 
than art-form. Like Karasik (Reference 2), we believe that while classical TRIZ principles 
apply, they form a necessary but insufficient part of a full ‘systematic innovation for 
software’ story. At the very least, the findings of the research underlying ‘TRIZ for 
Software’ have revealed the need to incorporate ideas from complexity theory and 
cybernetics into the basic philosophy. It is probably still early days in the overall evolution 
of the full story. 
 
Nevertheless, we also believe that it is possible to create tools capable of helping software 
engineers to do a better job. Specifically, we see the emergence of a definition/solution 
methodology comprising the following tools: 
 
       Definition:  1) Ideal Final Result 
    2) Problem Explorer (Reference 4, 6 and 7) 
    3) Subversion Analysis 
    4) Contradiction Matrix 
 
Solution Generation: 1)  Inventive Principles  

2) Trends/Evolution Potential 
3)  ‘Self- X’ 



The early experience of Beta users of this ‘TRIZ for Software’ toolkit appears to show 
considerable benefit. Clearly it is still early days, but the ability to offer software engineers 
at least the foundations of a systematic innovation capability is probably enough for most 
to want to give it a try. The book ‘TRIZ For Software Engineers’ will be published shortly 
for those that might be interested in taking the story further.  
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