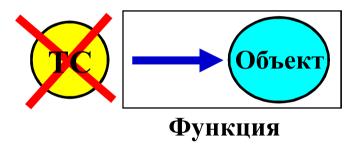
Как «процессная» модель помогает определить «рабочий орган» в технической системе и провести её «свертывание»?

Скуратович Александр Иванович, консультант и тренер по ТРИЗ и ФСА, сертифицированный специалист 4-го уровня МАТРИЗ, Республика Беларусь, Минск ais99@mail.ru

V Международная конференция «ТРИЗ. Практика применения методических инструментов в бизнесе. Российская Федерация, Москва, 2013.


1. Как «процессная» модель помогает определить «рабочий орган» в технической системе?

Закон увеличения степени идеальности ТС

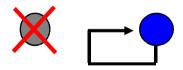
- Развитие систем идет в направлении увеличения степени их идеальности
- Идеальная ТС это система, вес, объем и площадь которой стремятся к нулю, хотя ее способность выполнять работу при этом не уменьшается
- Идеальная система это когда системы нет, а функция ее сохраняется и выполняется

Альтшуллер Г.С., Творчество как точная наука. – Петрозаводск: Скандинавия, 2004.

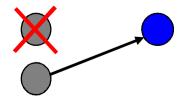
$$\uparrow$$
 Идеальность TC = $\frac{\uparrow \Sigma \Phi \text{ (полезных функций)}}{\downarrow \Sigma \text{ 3 (затраты)} + \downarrow \Sigma \text{ НЭ (нежелательные эффекты)}}$

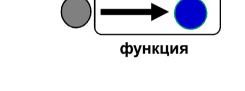
Функционально-идеальное моделирование ТС

Функционально-идеальная модель ТС - модель, включающая оставшиеся после «свертывания» компоненты и функции, перераспределенные в соответствии с условиями «свертывания», а также задачи «свертывания», оставшиеся и возникшие НЭ


Условия «свертывания» компонентов ТС

Компонент можно удалить из состава ТС если:

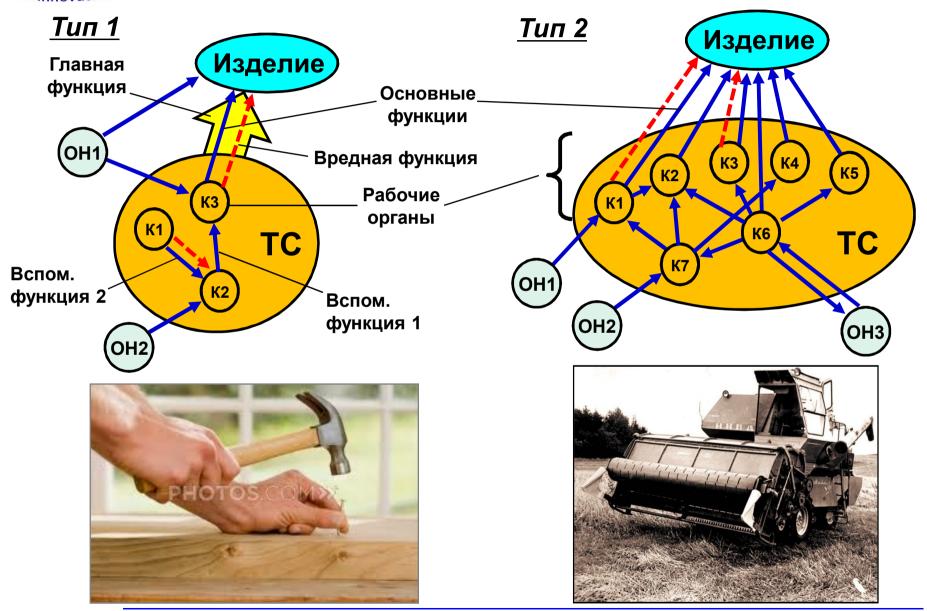




В) функцию выполняют оставшиеся компоненты ТС или надсистемы

В.М.Герасимов, С.С.Литвин. Основные положения методики проведения ФСА. Свертывание и сверхэффект. Журнал ТРИЗ 3.2.92, стр. 7-45.

Удаляемый

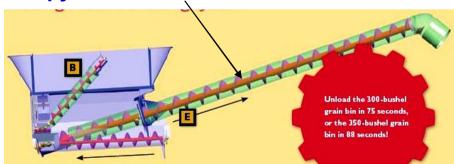

компонент

Объект

функции

(TRIZ)

Типы технических систем



Формулирование главной функции комбайна

Главная функция TC – это полезная функция, которая является последней в иерархии функций, выполняемых компонентами TC.

Выгрузной шнек

Проверка правильности формулировки главной функции комбайна по правилам ФСА-ТРИЗ

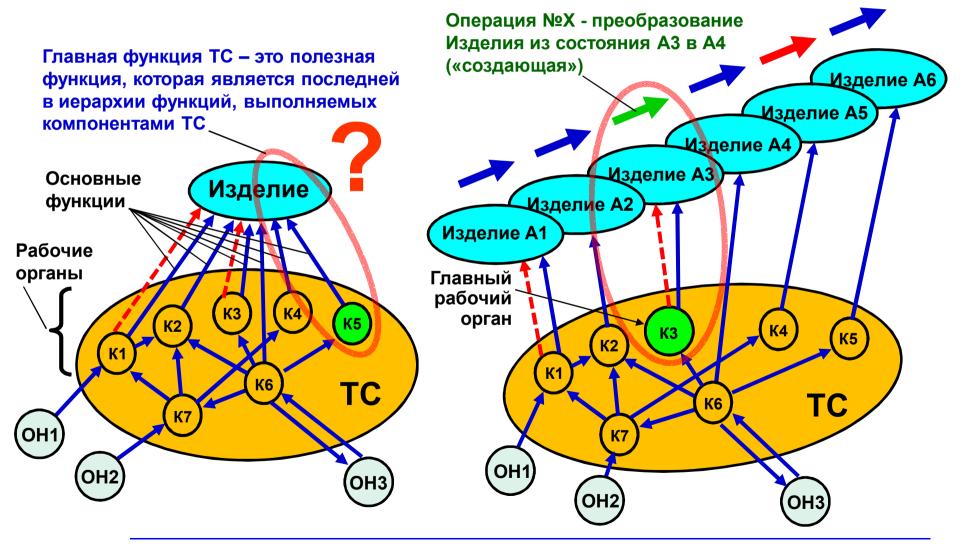
Проверяемая функция: «переместить зерно из бунке ра комбайна в кузов транспортного средства».

- 1. Вопрос: «Есть ли у комбайна компонент, который непосредственно выполняет эту функцию?»
- 2. Ответ: «Да, есть это выгрузной шнек комбайна».
- 3. Вопрос: «Зачем «перемещать зерно из бункера комбайна в кузов транспортного средства»?
- 4. Ответ: «Чтобы выполнить функцию: «переместить зерно от комбайна к сушилке или элеватору».
- 5. Вопрос: «Есть ли у комбайна компонент, непосред ственно выполняющий эту функцию?»
- 6. Ответ: «такого компонента нет».

Следовательно, «главная функция комбайна» - «переместить зерно из бункера комбайна в кузов транспортного средства», потому что она последняя в иерархии функций, которая ещё выполняется его компонентами.

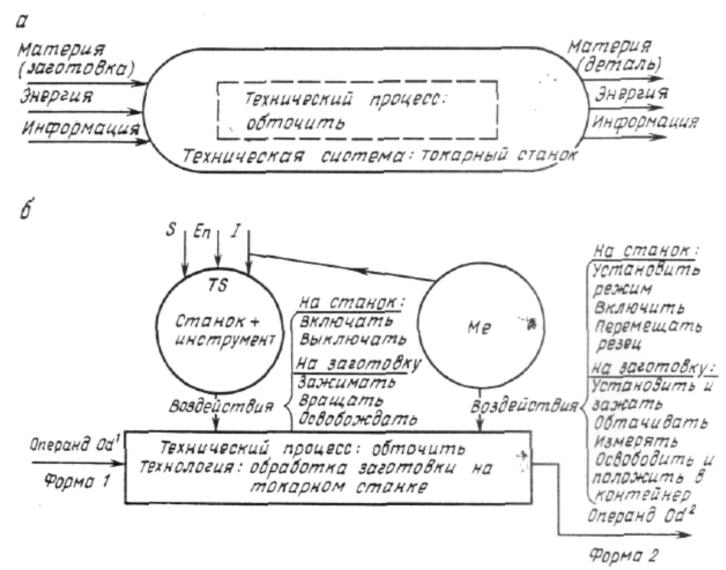
Выгрузной шнек, который выполняет эту функцию, является «главным рабочим органом» комбайна.

Но так ли это?

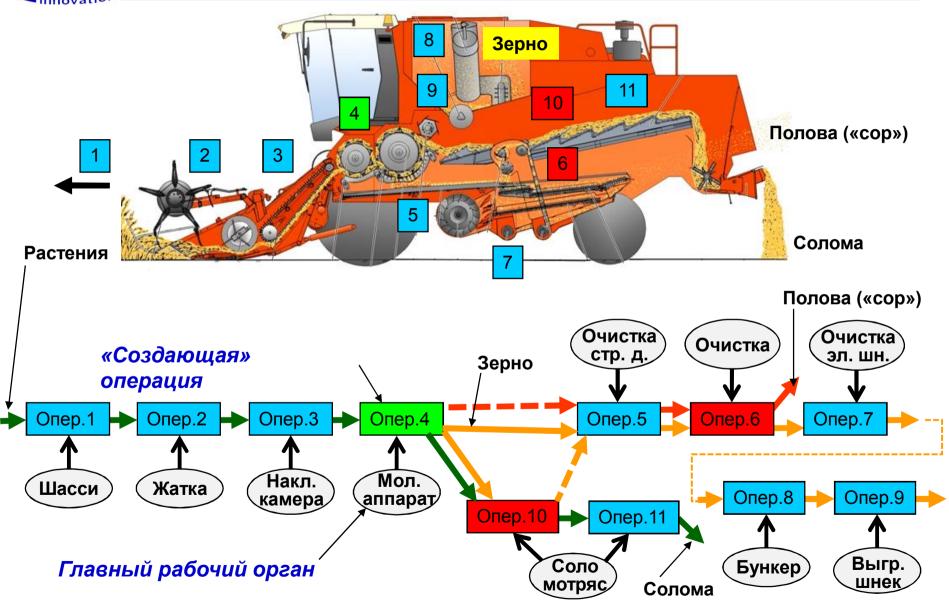


TRIZ ТС как процесс преобразований изделия

ТС 2-го типа

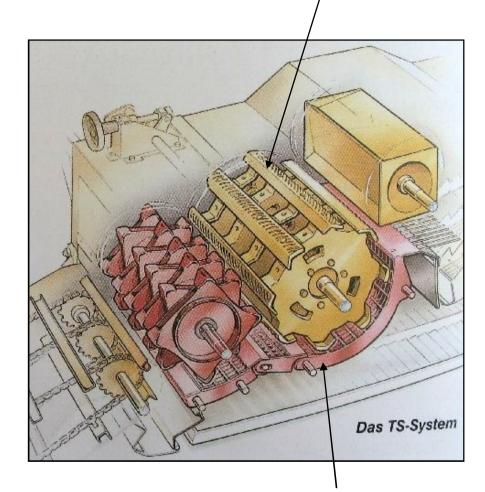


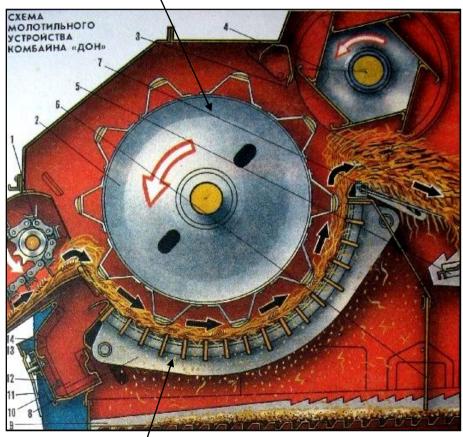
ТС как процесс преобразований Изделия


Модель процесса преобразований Хубки

Хубка В. Теория технических систем. М. Мир, 1987. См. стр. 49, рис. 4.6.

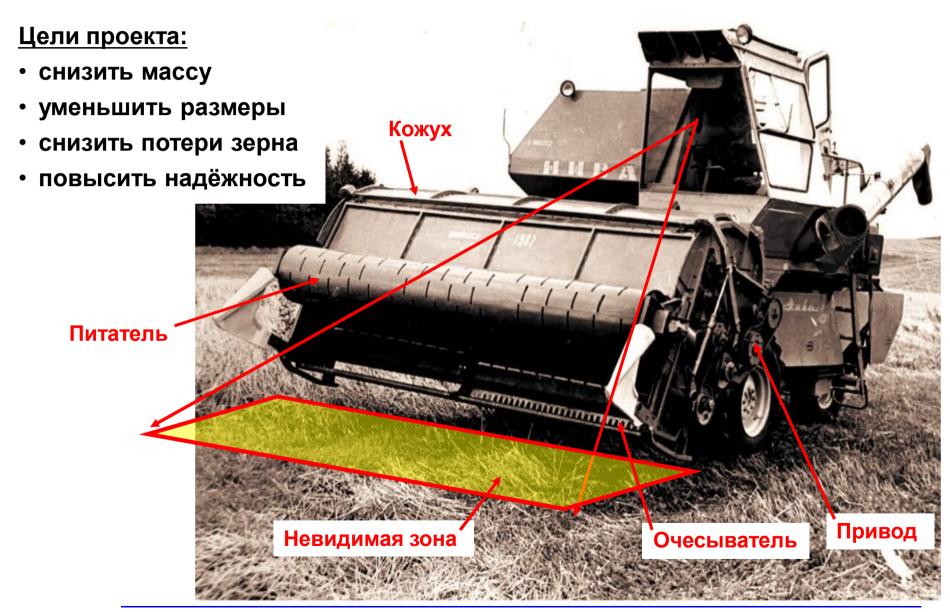
Техническая система Комбайн как процесс преобразований растений в зерно


TRIZ Операции процесса преобразований растений в комбайне

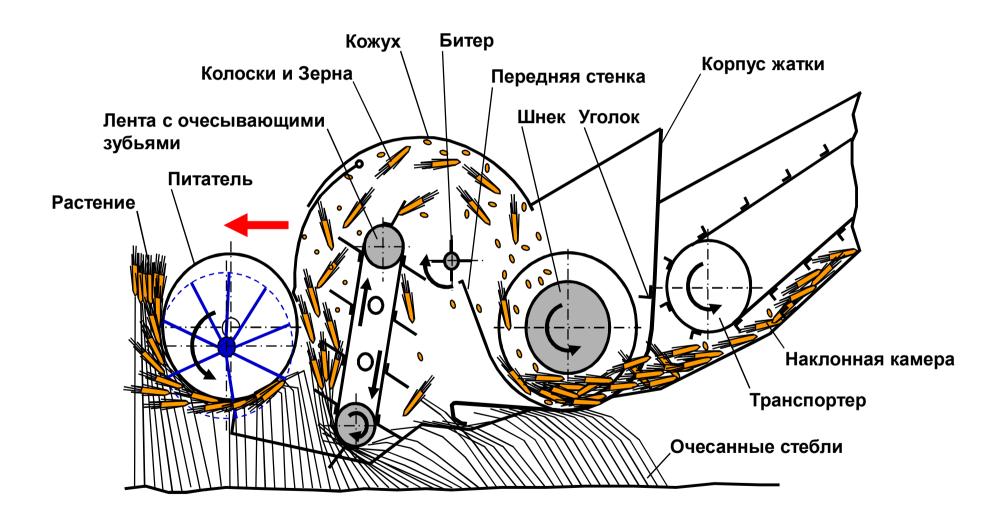

Процесс преобразований растений в зерно						
Наименование процесса	Оборудование	Формулировка главной функции процесса				
Уборка зерновой культуры	Комбайн зерноуборочный	Получить зерно (согласно заданным требованиям)				
Наименование операции	Часть комбайна	Формулировка функций операций	Вид операции	Ранги функций		
1. Подача растений к комбайну	Шасси	подвести жатку к растениям на поле	транспортная	Всп.2		
2. Отделение растений	Жатка	отделить растения (солома и зерно) от корней	подготовит.	Всп.1		
3. Подача растений к молот. аппарату	Жатка Наклонная камера	переместить отделённые растения к молот. аппарату	транспортная	Всп.1		
4. Выделение зерна из колосьев растений	Молотильн. аппарат	отделить зерна от растений	создающая	Осн.		
5. Подача зерна к очистке	Очистка (стрясная доска)	переместить зерно с половой и частичками соломы к решетам очистки	транспортная	Всп.2		
6. Очистка зерна	Очистка	удалить полову и частички соломы из зерна	исправляющая	Всп.1		
7. Подача зерна в бункер	Очистка (элеватор, шнеки)	переместить зерно к шнеку бункера	транспортная	Всп.3		
8. Хранение зерна	Бункер	накапливать зерно сохранять зерно	подготовит.	Всп.2		
9. Подача зерна в трансп. средство	Выгрузной шнек	переместить зерно в кузов транспортного средства	транспортная	Всп.1		
10. Очистка соломы от зерна	Соломотряс	удалить зерно из соломы	исправляющая	Всп.1		
11. Удаление соломы	Соломотряс	удалить солому из комбайна	транспортная	Всп.2		

Главный рабочий орган комбайна — **TRIZ** молотильный барабан и решето подбарабанья

Молотильный барабан


Решето подбарабанья

2. Как «процессная» модель помогает провести «свертывание» ТС?



Белорусская очёсывающая жатка (прототип)

TRIZ Как очёсывающая жатка работает?

Функциональная модель жатки

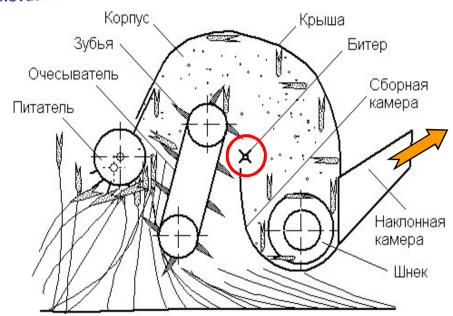
Название системы	Формулировка главной функции системы	
Очесывающая жатка	молотилке комбайна	
Название узлов		
Питатель	подавать растения (стебли и <mark>колосья</mark>) к очесывателю	Основная
Очесыватель	отделять <mark>колосья</mark> от стеблей растений	Основная
Крыша	удерживать и направлять <mark>колосья и зерна</mark> к сборной камере	Основная
Битер	удалять застрявшие колосья и стебли с очесывателя	Основная
Сборная камера	удерживать и направлять <mark>колосья и зерна</mark> к наклонной камере	Основная
Шнек	перемещать колосья и зерна к наклонной камере	Основная
Наклонная камера	перемещать <mark>колосья и зерна</mark> к молотилке комбайна	Основная
Корпус	удерживать <mark>колосья изерна</mark> внутри жатки удерживать узлы жатки	Основная Вспомогательная
Привод	приводить в движение питатель, очесыватель, битер, шнек, наклонную камеру (ее транспортер)	Вспомогательная

По правилам «свёртывания», чтобы упростить ТС, надо попробовать удалить из неё компоненты, выполняющие вспомогательные функции.

Но большинство компонентов жатки обрабатывают колосья и зёрна (Изделие), поэтому ранги их функций – «Основные».

Какой же компонент жатки удалять первым?

TRIZ Анализ процесса обработки растений


Анализ показывает, что Битер выполняет "исправляющую" операцию.

Битер устраняет НЭ - «колосья и стебли застревают в зубьях очёсывателя и выносятся на поле», который возникает на предыдущих операциях - «Обрыв колосьев» и «Транспортировка колосьев и зерен к сборной камере».

Следовательно, ранг операции, выполняемой Битером, - «вспомогательная» и поэтому Битер следует попытаться устранить из Очёсывающей жатки первым.

Условия свёртывания для Битера

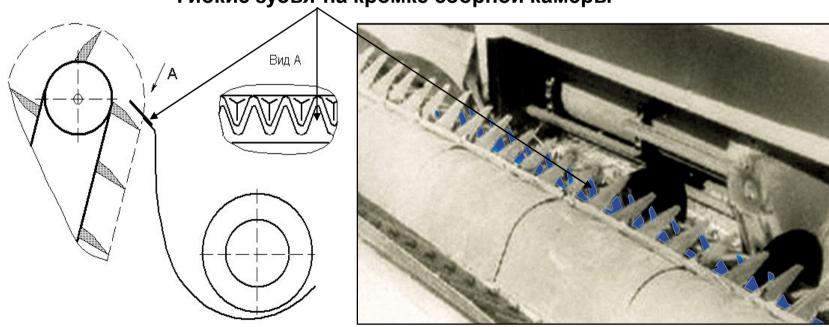
Функция Битера:

удалять застрявшие колосья и стебли с зубьев очёсывателя.

Битер можно удалить из конструкции жатки, если:

- А) Нет застрявших колосьев и стеблей;
- Б) Застрявшие колосья и стебли САМИ удаляются с зубьев;
- В)Застрявшие колосья и стебли удаляются с зубьев оставшимися компонентами жатки или объектами её надсистемы:
 - очесывающие зубья;
 - лента очесывателя;
 - верхний край сборной камеры;

• ...



RIZИдея – Передняя стенка выполняет функцию Битера

Предложено:

- удалить битер из конструкции;
- функции битера передать передней стенке сборной камеры;
- на передней стенке установить гибкие упругие зубья, так чтобы очёсывающие зубья проходили между ними;
- удалить привод битера как ненужный упрощается привод очёсывателя и снижается его масса.

Гибкие зубья на кромке сборной камеры

Усовершенствованная очёсывающая жатка

Сравнительные характеристики	Исходная конструкция	Новая конструкция
Масса жатки, кг	2200	1500
Потери зерна, %	5 - 7	2 - 3
Количество основных узлов, шт.	10	1 удалён 8 упрощены

Заказчик – НПО «Белсельхозмеханизация», Минск, Республика Беларусь. Время выполнения работы – июнь 1989 – ноябрь 1990. Патент США № 5,974,772.

Совершенствование очёсывающей жатки

THE IS ALL STATES AND ADDRESS OF THE ISLANDING TO THE ISL

Исходная конструкция очесывающей жатки для уборки зерновых культур

Цели усовершенствования:

- уменьшить массу
- уменьшить габариты
- уменьшить потери зерна
- увеличить надежность

Очесывающая жатка после применения метода «ФСА+ТРИЗ»

Очесывающая жатка новой конструкции прошла испытания на государственных испытательных станциях в Беларуси и России в 1992–1996 годах.

Испытания показали высокую эффективность жатки, особенно для низких и полеглых хлебов, а также на растениях различной высоты.

Выводы

- 1. Все ТС предложено условно разделять на 2 типа: первый ТС с одним «рабочим органом» и второй *ТС с несколькими «рабочими органами»*.
- 2. Для анализа ТС с несколькими «рабочими органами» предложено дополнительно *использовать модели и правила, применяемые для анализа и «свёртывания» технологических процессов.*
- 3. Предложен дополнительный критерий для определения «главного рабочего органа» в ТС с несколькими «рабочими органами» «главным рабочим органом» в ТС является тот компонент, который выполняет «создающую» операцию в процессе преобразований «изделия».
- 4. Предложен дополнительный критерий выбора компонента для «свёртывания» в ТС с несколькими «рабочими органами» в первую очередь «сворачивают» компоненты, выполняющие «исправляющие» операции в процессе преобразований «изделия», поскольку они исправляют недостатки, возникшие на предыдущих операциях. Затем сворачивают компоненты, выполняющие «транспортные», «измерительные» и «подготовительные» операции.

Спасибо за внимание!

Рад ответить на ваши вопросы.

Скуратович Александр Иванович,

консультант и тренер по ТРИЗ и ФСА, сертифицированный специалист 4-го уровня МАТРИЗ, Республика Беларусь, Минск

ais99@mail.ru