40 Principles – Chemical Illustrations

Billy Grierson, Iain Fraser, Ailsa Morrison, Stuart Niven, Greig Chisholm Ciba Specialty Chemicals Contact: billy.grierson@cibasc.com

Introduction

The origins of TRIZ are to be found in the analysis of engineering and utility patents of the former USSR. As such the 40 Principles of TRIZ were constructed to tackle engineering problems. Much work has been done attempting to extend the use of the principles into non-engineering situations, such as the 'soft' issues in business, personal or health. However, there has been less work published which aims TRIZ directly at chemistry and its applications. This paper is designed to initiate the discussion on how the 40 principles of TRIZ may be applied directly to chemical problems.

Background

In Ciba we have tried to apply TRIZ to chemical problems but have found it difficult to relate the 40 Principles to what happens in a chemical system. The main challenge we have experienced in applying TRIZ to chemistry is finding examples that can be used to explain the meaning of the 40 Principles in chemical terms. Most of the examples currently used are engineering systems that do not always have an obvious relevance to the molecular world.

In order to try to overcome this hurdle we have put together some illustrations based on chemistry and its applications rather than engineering. We have tried to use general chemical reactions or principles as far as possible, but coming from a pigment manufacturing background there are inevitably some examples which are specific to the colour industry. Full explanations of all examples given can be found in generally available chemical textbooks (see below) and most should be familiar to any chemist with a good general knowledge of the subject.

This list is not intended as an aid to the extension of TRIZ into chemistry, but rather as a teaching tool to help introduce TRIZ to chemists in terms they understand. We would be greatly interested in any other suggestions for illustrations, or any case studies involving chemical systems.

	Principle	Illustration
1	Segmentation Separation into smaller parts	Mass Spectrometry – molecules broken down determine structure Synergist/hyperdispersant*
2	Extraction Take out or separate something	Fractional distillation Chromatography

Chemical Illustrations of the 40 Principles of TRIZ

3 Local Quality Soxhiet extraction of natural products or additives. 3 Local Quality Surfactants – hydrophobic and hydrophilic parts Block copolymers – pigment anchoring and solvent compatible* 9 Asymmetry Different functions Charge transfer complexes. 4 Asymmetry Chiral centres – biologically active materials are often a particular stereoisomer 5 Combination (Consolidation) One pot reactions 6 Universality One pot reactions 1 Nitrocellulose – fuel and oxidant in the same molecule 1 High throughput synthesis/combinatorial chemistry/parallel synthesis/combinatorial functions 6 Universality Monomer used as solvent and source of nitrogen in Copper Phthalocyanine synthesis. 7 Nesting Encapsulation 9 Prior counteraction adjust of an object of prevent, or reduce, harmful effect Driying of solvents for use in water sensitive reactions 9 Prior counteraction to prevent, or reduce, harmful effect Driying of solvents for use in water sensitive reactions 9 Prior counteraction Take action to prevent, or reduce, harmful effect Driying of solvents for use in water sensitive reactions 9 Prior counteraction Take action to prevent, or reduce, harmful effect Driying of			
3 Local Quality additives. 3 Local Quality Surfactants – hydrophobic and hydrophilic parts Block copolymers – pigment anchoring and solvent compatible* 3 Different functions Surfactants – hydrophobic and hydrophilic parts Block copolymers – pigment anchoring and solvent compatible* 4 Asymmetry Directing groups – change the reactivity of different sites. 5 Combination (Consolidation) Chiral centres – biologically active materials are off, a symmetry 5 Combination (Consolidation) One pot reactions 6 Universality Nitrocellulose – fuel and oxidant in the same molecule High throughput synthesis/combinatorial chemistry/parallel synthesis. Used for synthesis/screening/crystallization 6 Universality Monomer used as solvent and reactant in UV inks 7 Nesting Encapsulation 8 Counterweight Encapsulation 9 Prior counteraction Take action to prevent, or reduce, harmful effect 9 Prior counteraction Drying of solvents for use in water sensitive reactions use in solvents for use in the promorium Chloride. The ammonia complex of Zn is solvents for use in the ZnEDTA cheate. The NH ₄ CL also acts as a buffer – Principle 6 – Universality) 9 Prior counteraction Drying of solvents for us			Crystallisation
Different parts of an object carry out different functions Block copolymers – pigment anchoring and solvent compatible* Directing groups – change the reactivity of different sites. Charge transfer complexes. 4 Asymmetry Introduce, or increase the degree of, asymmetry Chiral centres – biologically active materials are often a particular stereoisomer 5 Combination (Consolidation) One pot reactions 6 Universality Use an object to perform several functions Monomer used as solvent and reactant in UV inks 7 Nesting Putting one thing inside another Encapsulation 8 Counterweight Competention Cosely equating boiling point with weight: vacuum distillation or rotary evaporation. 9 Prior counteraction Take action to prevent, or reduce, harmful effect Drying of solvents for use in water sensitive reactions 9 Prior counteraction Take action to prevent, or reduce, harmful effect Drying of solvents for use in water sensitive reactions 9 Prior Counterveight Comparison to prevent, or reduce, harmful effect Drying of solvents for use in water sensitive reactions 9 Prior Counteraction Take action to prevent, or reduce, harmful effect Drying of solvents for use in water sensitive reactions 9 Prior Counteraction Take action to prevent, or reduce, harmful effect Drying of solvents for use in water sensitive react			•
out different functions Biole outporties - pigniferit alterioling and solvent compatible* biole outporties - pigniferit alterioling and different sites. Directing groups - change the reactivity of different sites. 4 Asymmetry Introduce, or increase the degree of, asymmetry Chiral centres - biologically active materials are often a particular stereoisomer 5 Combination (Consolidation) One pot reactions Nitrocellulose - fuel and oxidant in the same molecule 6 Universality Use an object to perform several functions Monomer used as solvent and reactant in UV inks 7 Nesting Putting one thing inside another Encapsulation Inclusion compounds Chelates - e.g. EDTA to mask transition metals 8 Counterweight Compensate for the weight of an object Drying of solvents for use in water sensitive reactions 9 Prior counteraction Take action to prevent, or reduce, harmful effect Drying of solvents for use in water sensitive reactions 9 Prior counteraction Take action to prevent, or reduce, harmful effect Drying of solvents for use in water sensitive reactions 9 Prior counteraction Take action to prevent, or reduce, harmful effect Drying of solvents for use in water sensitive reactions Use of blocking groups to prevent reaction at particular sites Use of secondary complexing agents in EDTA titration e.g. Zn will be precipitated at pH10 but we need this pH to titrate it with EDTA. Add Amm	3	Different parts of an object carry	Surfactants – hydrophobic and hydrophilic parts
different sites. Charge transfer complexes. 4 Asymmetry Introduce, or increase the degree of, asymmetry Chiral centres – biologically active materials are often a particular stereoisomer 5 Combination (Consolidation) One pot reactions 5 Combination (Consolidation) One pot reactions 6 Universality Use an object to perform several functions Monomer used as solvent and reactant in UV inks 7 Nesting Putting one thing inside another Encapsulation Inclusion compounds Chelates – e.g. EDTA to mask transition metals 8 Counterweight Compensate for the weight of an object Drying of solvents for use in water sensitive reactions 9 Take action to prevent, or reduce, harmful effect Drying of solvents for use in water sensitive reactions 9 Toy counteraction Take action to prevent, or reduce, harmful effect Drying of solvents for use in water sensitive reactions 9 Take action to prevent, or reduce, harmful effect Drying of solvents for use in water sensitive reactions 9 Take action to prevent, or reduce, harmful effect Drying of solvents for use in water sensitive reactions 9 Take action to prevent, or reduce, harmful effect Drying of solvents for use in water sensitive reactions 9 To be actin to prevent, or reduce, harmful effect <t< td=""><td></td><td></td></t<>			
4 Asymmetry Introduce, or increase the degree of, asymmetry Chiral centres – biologically active materials are often a particular stereoisomer Surfactants 5 Combination (Consolidation) One pot reactions Nitrocellulose – fuel and oxidant in the same molecule 6 Universality Use an object to perform several functions Monomer used as solvent and reactant in UV inks 7 Nesting Putting one thing inside another Encapsulation Inclusion compounds Chelates – e.g. EDTA to mask transition metals 8 Counterweight Compensate for the weight of an object Lossely equating boiling point with weight: vacuum distillation or rotary evaporation. 9 Prior counteraction Take action to prevent, or reduce, harmful effect Drying of solvents for use in water sensitive reactions 9 Drying of solvents for use not interfere with the Zn EDTA chelate. (The NH ₄ CL also acts as a buffer – Principle 6 – Universality) 0 Use of protecting groups in organic synthesis			
Introduce, or increase the degree of, asymmetry often a particular stereoisomer Surfactants 5 Combination (Consolidation) One pot reactions 5 Combination (Consolidation) One pot reactions 6 Universality Monomer used as solvent and reactant in UV inks 9 Nesting Prior counteraction 9 Prior counteraction Drying of solvents for use in water sensitive reactions 9 Prior counteraction Drying of solvents for use in water sensitive reactions 9 Prior counteraction Drying of solvents for use in water sensitive reactions 9 Prior counteraction Drying of solvents for use in water sensitive reactions 0 Use of blocking groups to prevent reaction at particular sites 0 Use of secondary complexing agents in EDTA tirration e.g. Zn will be precipitated at pH10 but we need this pH to titrate it with EDTA. Add Ammonium Chloride. The ammonia complex of Zn is soluble but does not interfere with the ZnEDTA chelate. (The NH ₄ CL also acts as a buffer – Principle 6 – Universality) 0 Use of protecting groups in organic synthesis			Charge transfer complexes.
5 Combination (Consolidation) One pot reactions 5 Combination (Consolidation) One pot reactions 6 Universality Nitrocellulose – fuel and oxidant in the same molecule High throughput synthesis/combinatorial chemistry/parallel synthesis. Used for synthesis/screening/crystallization 6 Universality Use an object to perform several functions Monomer used as solvent and reactant in UV inks 7 Nesting Putting one thing inside another Encapsulation 7 Nesting Putting one thing inside another Encapsulation 8 Counterweight Compensate for the weight of an object Drying of solvents for use in water sensitive reactions 9 Prior counteraction Drying of solvents for use in water sensitive reactions Take action to prevent, or reduce, harmful effect Drying of solvents for use in water sensitive reaction at particular sites Use of blocking groups to prevent reaction at particular sites Use of secondary complexing agents in EDTA titration e.g. Zn will be precipitated at pH10 but we need this pH to titrate it with EDTA. Add Ammonium Chloride. The ammonia complex of Zn is soluble but does not interfere with the ZnEDTA chelate. (The NH₄CL also acts as a buffer – Principle 6 – Universality) Use of protecting groups in organic synthesis	4	Introduce, or increase the degree	
Nitrocellulose – fuel and oxidant in the same moleculeHigh throughput synthesis/combinatorial chemistry/parallel synthesis. Used for synthesis/screening/crystallizationMitrocellulose – fuel and oxidant in the same moleculeHigh throughput synthesis. Used for synthesis/screening/crystallizationMitrocellulose an object to perform several functionsMonomer used as solvent and reactant in UV inksUse an object to perform several functionsPutting one thing inside anotherPutting one thing inside anotherPutting one thing inside anotherEncapsulation Inclusion compounds Chelates – e.g. EDTA to mask transition metalsCounterweight Compensate for the weight of an objectPrior counteraction Take action to prevent, or reduce, harmful effectDrying of solvents for use in water sensitive reactions Use of blocking groups to prevent reaction at particular sitesUse of secondary complexing agents in EDTA titration e.g. Zn will be precipitated at pH10 but we need this pH to titrate it with EDTA. Add Ammonium Chloride. The ammonia complex of Zn is soluble but does not interfere with the ZnEDTA chelate. (The NH4CL also acts as a buffer – Principle 6 – Universality) Use of protecting groups in organic synthesis Reactions under argon/nitrogen		of, asymmetry	Surfactants
moleculeHigh throughput synthesis/combinatorial chemistry/parallel synthesis. Used for synthesis/screening/crystallization6Universality Use an object to perform several functionsMonomer used as solvent and reactant in UV inks Urea used as solvent and source of nitrogen in Copper Phthalocyanine synthesis.7Nesting Putting one thing inside anotherEncapsulation Inclusion compounds Chelates – e.g. EDTA to mask transition metals8Counterweight Compensate for the weight of an objectLoosely equating boiling point with weight: vacuum distillation or rotary evaporation.9Prior counteraction Take action to prevent, or reduce, harmful effectDrying of solvents for use in water sensitive reactions Use of blocking groups to prevent reaction at particular sites Use of secondary complexing agents in EDTA titration e.g. Zn will be precipitated at pH10 but we need this pH to titrate it with EDTA. Add Ammonium Chloride. The ammonia complex of Zn is soluble but does not interfere with the ZnEDTA chelate. (The NH4CL also acts as a buffer – Principle 6 – Universality) Use of protecting groups in organic synthesis Reactions under argon/nitrogen	5	Combination (Consolidation)	One pot reactions
 chemistry/parallel synthesis. Used for synthesis/screening/crystallization Universality Use an object to perform several functions Mesting Putting one thing inside another Resting Putting one thing inside another Counterweight Compensate for the weight of an object Prior counteraction Take action to prevent, or reduce, harmful effect Prior counteraction Use of blocking groups to prevent reaction at particular sites Use of blocking groups to prevent reaction at particular sites Use of blocking groups to prevent reaction at particular sites Use of blocking groups to prevent reaction at particular sites Use of protecting agents in EDTA titrato it with EDTA. Add Ammonium Chloride. The ammonia complex of Zn is soluble but does not interfere with the ZnEDTA chelate. (The NH₄CL also acts as a buffer – Principle 6 – Universality) Use of protecting groups in organic synthesis 			
Use an object to perform several functionsinksUrea used as solvent and source of nitrogen in Copper Phthalocyanine synthesis.Putting one thing inside anotherEncapsulation Inclusion compounds Chelates – e.g. EDTA to mask transition metalsCounterweight Compensate for the weight of an objectLoosely equating boiling point with weight: vacuum distillation or rotary evaporation.Prior counteraction Take action to prevent, or reduce, harmful effectDrying of solvents for use in water sensitive reactions Use of blocking groups to prevent reaction at particular sites Use of secondary complexing agents in EDTA titration e.g. Zn will be precipitated at pH10 but we need this pH to titrate it with EDTA. Add Ammonium Chloride. The ammonia complex of Zn is soluble but does not interfere with the ZnEDTA chelate. (The NH4CL also acts as a buffer – Principle 6 – Universality) Use of protecting groups in organic synthesis Reactions under argon/nitrogen			chemistry/parallel synthesis. Used for
7 Nesting Putting one thing inside another Encapsulation Inclusion compounds Chelates – e.g. EDTA to mask transition metals 8 Counterweight Compensate for the weight of an object Loosely equating boiling point with weight: vacuum distillation or rotary evaporation. 9 Prior counteraction Take action to prevent, or reduce, harmful effect Drying of solvents for use in water sensitive reactions Use of blocking groups to prevent reaction at particular sites Use of secondary complexing agents in EDTA titration e.g. Zn will be precipitated at pH10 but we need this pH to titrate it with EDTA. Add Ammonium Chloride. The ammonia complex of Zn is soluble but does not interfere with the ZnEDTA chelate. (The NH4CL also acts as a buffer – Principle 6 – Universality)	6	Use an object to perform several	
Putting one thing inside another Inclusion compounds Chelates – e.g. EDTA to mask transition metals Counterweight Compensate for the weight of an object Loosely equating boiling point with weight: vacuum distillation or rotary evaporation. Prior counteraction Take action to prevent, or reduce, harmful effect Drying of solvents for use in water sensitive reactions Use of blocking groups to prevent reaction at particular sites Use of secondary complexing agents in EDTA titration e.g. Zn will be precipitated at pH10 but we need this pH to titrate it with EDTA. Add Ammonium Chloride. The ammonia complex of Zn is soluble but does not interfere with the ZnEDTA chelate. (The NH₄CL also acts as a buffer – Principle 6 – Universality) Use of protecting groups in organic synthesis Reactions under argon/nitrogen			
8 Counterweight Compensate for the weight of an object Loosely equating boiling point with weight: vacuum distillation or rotary evaporation. 9 Prior counteraction Take action to prevent, or reduce, harmful effect Drying of solvents for use in water sensitive reactions Use of blocking groups to prevent reaction at particular sites Use of secondary complexing agents in EDTA titration e.g. Zn will be precipitated at pH10 but we need this pH to titrate it with EDTA. Add Ammonium Chloride. The ammonia complex of Zn is soluble but does not interfere with the ZnEDTA chelate. (The NH4CL also acts as a buffer – Principle 6 – Universality) Use of protecting groups in organic synthesis Reactions under argon/nitrogen	7		Encapsulation
 8 Counterweight Compensate for the weight of an object 9 Prior counteraction Take action to prevent, or reduce, harmful effect 9 Drying of solvents for use in water sensitive reactions Use of blocking groups to prevent reaction at particular sites Use of secondary complexing agents in EDTA titration e.g. Zn will be precipitated at pH10 but we need this pH to titrate it with EDTA. Add Ammonium Chloride. The ammonia complex of Zn is soluble but does not interfere with the ZnEDTA chelate. (The NH₄CL also acts as a buffer – Principle 6 – Universality) Use of protecting groups in organic synthesis Reactions under argon/nitrogen 		Putting one thing inside another	Inclusion compounds
Compensate for the weight of an object vacuum distillation or rotary evaporation. Prior counteraction Drying of solvents for use in water sensitive reactions Take action to prevent, or reduce, harmful effect Drying of solvents for use in water sensitive reactions Use of blocking groups to prevent reaction at particular sites Use of secondary complexing agents in EDTA titration e.g. Zn will be precipitated at pH10 but we need this pH to titrate it with EDTA. Add Ammonium Chloride. The ammonia complex of Zn is soluble but does not interfere with the ZnEDTA chelate. (The NH₄CL also acts as a buffer – Principle 6 – Universality) Use of protecting groups in organic synthesis Reactions under argon/nitrogen			Chelates – e.g. EDTA to mask transition metals
 9 Prior counteraction Take action to prevent, or reduce, harmful effect 9 Drying of solvents for use in water sensitive reactions 9 Use of blocking groups to prevent reaction at particular sites 9 Use of secondary complexing agents in EDTA titration e.g. Zn will be precipitated at pH10 but we need this pH to titrate it with EDTA. Add Ammonium Chloride. The ammonia complex of Zn is soluble but does not interfere with the ZnEDTA chelate. (The NH₄CL also acts as a buffer – Principle 6 – Universality) 9 Use of protecting groups in organic synthesis Reactions under argon/nitrogen 	8	Compensate for the weight of an	
Use of blocking groups to prevent reaction at particular sites Use of secondary complexing agents in EDTA titration e.g. Zn will be precipitated at pH10 but we need this pH to titrate it with EDTA. Add Ammonium Chloride. The ammonia complex of Zn is soluble but does not interfere with the ZnEDTA chelate. (The NH ₄ CL also acts as a buffer – Principle 6 – Universality) Use of protecting groups in organic synthesis Reactions under argon/nitrogen	9	Prior counteraction Take action to prevent, or reduce,	
titration e.g. Zn will be precipitated at pH10 but we need this pH to titrate it with EDTA. Add Ammonium Chloride. The ammonia complex of Zn is soluble but does not interfere with the ZnEDTA chelate. (The NH ₄ CL also acts as a buffer – Principle 6 – Universality) Use of protecting groups in organic synthesis Reactions under argon/nitrogen			
Reactions under argon/nitrogen			titration e.g. Zn will be precipitated at pH10 but we need this pH to titrate it with EDTA. Add Ammonium Chloride. The ammonia complex of Zn is soluble but does not interfere with the ZnEDTA chelate. (The NH ₄ CL also acts as a
			Use of protecting groups in organic synthesis
Low temperatures to prevent side reactions			Reactions under argon/nitrogen
			Low temperatures to prevent side reactions

		Slow addition or defined order of addition to control side reactions
		Dean Stark apparatus to remove water in condensation reaction
10	Prior action Take action beforehand to ease an	Back titration e.g. add excess of EDTA then back titrate the excess with Ca or Mg.
	event	Adding UV stabilisers to prevent sun damage
		Addition of seed crystals to control crystallisation
		Crystal engineering by addition of additives, choice of solvent/conditions etc.
11	Cushion in advance	Explosion prevention system
	Prepare for things which may fail or go wrong	Use of EDTA in fount solution to prevent precipitation of citrates/tartrates.
		Bursting discs on pumps.
		Cold finger traps when distilling
12	Equipotentiality	Catalyses and enzymes
	Avoid lifting or lowering an object	Activating groups
		Use of automated methods for addition e.g. syringe pumps
13	Inversion	Back titrations
	Do it the other way round	Reverse chromatography to measure surface properties
		Poisoning of crystal to prevent growth
		Sublimation instead of crystallisation
14	Spheroidality	Non-linear gradient for solvent mix in HPLC
	Replace linear with a curve or a sphere	Nono-tube graphite and fullerenes
	-	Slowing coupling reaction toward the end to achieve a better end point
15	Dynamicity Create systems which are able to	Remove aromaticity, double bonds etc to make a molecule more flexibly.
	cope with change and intrusions from the outside – separating parts,	Increase chain lengths to increase flexibility
	flexible connections etc.	Use of plasticiser
		PH and redox buffers
16	Partial, overdone or excessive action	Take reaction to 90% and then clean up rather that try to get 100%
	Achieve more or less of the desired effect	Add excess of reactant to push an equilibrium in the desired direction.
		Refluxing reaction mixture
17	Move to a new dimension	Comb copolymers

	Go upwards, sideway, around	Cross-linking polymers
	corners, rotate object, change	Dendrimers
	viewpoint	Branched rather than linear hydrocarbons
		Multi-layer effect pigments
		Cyclic rather than linear aliphatics
18	Mechanical vibration	Sonochemistry
10	Shaking, vibrating, sound waves, ultrasound Periodic action	Photoinitiators, thermal initiators
		IR. Spectroscopy
19		Non-intrusive mixing
15	Pulsed action	
20	Continuity of useful action	Continuous vs batch production
	Carry out actions without a break	Citric acid cycle
		React and distil final product in same apparatus
21	Rushing through	Kinetically controlled reactions
	Do things at high speed to reduce time for problems to occur	Drown out crystallisation to produce a thermodynamically unstable polymorph
22	Convert harm into benefit	Use waste heat to pre-heat reactants
		Recover and use by-products of a reaction
		Immunisation
23	Feedback	Buffered systems
	Introduce. If it exists, change it	pH controlled pump
		Thin layer chromatography to monitor reaction progress.
		Distil or otherwise remove side or by products to monitor progress of reaction
24	Mediator Use an intermediary object to transfer or carry out an action	Photoinitiators
		Steam heating
		Synergists on pigment surface
		Dispersant on pigment
		Grignard reaction
		Catalyst
		Phase transfer catalyst
25	Self-service Can your device do things for itself	Photochromic glass
26	Copying	Amplification reactions
	Use a simple, cheap copy	Electron microscopy
		Molecular modelling
27	Inexpensive short life (Dispose) Replace expensive object with a	Disposable pipettes

	cheap one	Use excess of less reactive but cheaper raw material.
28	28 Replacement of a mechanical system Replace a mechanical system with a field	Sonochemistry
		Microwave reactions
		Use of a radioactive source in a smoke detector or a chemical reagent in a CO detector as opposed to some mechanical means of measurement.
29	Use of pneumatic or hydraulic	Use pressure rise to detect a runaway reaction.
	systems	Use hydraulics for power when using flammable solvents
		Filter press
30	Flexible films or thin membranes	Vapour deposition of Cr to dissipate charge in Scanning Electron Microscope
		Interference colours
		Surface treatments
		Paints and inks
31	Use of porous materials	Filtration
		Zeolites
		Chromatography e.g. GPC – small molecules enter pores and so take longer to elute
		Osmosis
		Crystal growth limited with a pore of say a zeolite
32	Changing the colour	Titration indicators
		Photochromic lenses
		Carbonless copying
		Thermochromic thermometers
33	Homogeneity Increase? Decrease?	Block copolymers, comb copolymers
		Replace solvent blend with single solvent with same solubility parameters
		Phase transfer reactions
		Is it necessary to have reagents in one phase? e.g. solid state reactions avoid solvent or reaction between a solid and a liquid.
34	34 Rejecting and regenerating parts When a part is used and no longer needed throw it away, restore it or recycle it	Catalysis
		Silica gel for drying
		Ammonia recovery
		Recycling solvents e.g. recovery of toluene in gravure printing

35	Transforming physical or	Separation by distillation
	chemical states	Precipitation
		Crystallisation
		Drying/evaporation
		Gas phase reactions
		Sublimation
36	Phase transitions	a to ß Copper Phtalocyanine
		Allotropes of sulphur
		Synthesis of volatile derivatives for gas chromatography or gas phase reactions
37	Thermal expansion	Explosives
38	Use of strong oxidisers	Bleaches
		Oxidising agents
		Oxidation at electrodes
39	Inert environment	N ₂ blanket
		Co-solvents or inert solvents
		Vacuum
40	Composite materials	Surfactants
		Copolymers
		Alloys
		Nanocomposites – clays mixed with nylon give improved properties

* The term synergist/hyperdispersant is familiar to anyone working in the ink or surface coating industry. In principle, a dispersion of pigment particles in a liquid medium will tend to flocculate unless there is some stabilisation mechanism. In non-aqueous systems, this is achieved by adsorbing a solvent soluble chain onto the pigment surface. This creates a barrier which prevents particles from approaching close enough to interact. However, if the adsorbing chain is soluble, it will stay in solution and not adsorb onto the pigment. What is needed is an insoluble soluble surface treatment. The principle of segmentation is used by having a two part system. One part, the "synergist", is insoluble and strongly adsorbs onto the pigment. This synergist contains polar groups. The dispersant consists of a soluble chain, with a polar end group. Overall, the dispersant is soluble in the medium, but the polar end group interacts strongly with the synergist and so is held close to the surface of the pigment. The soluble chain of the dispersant sticks out into the medium and gives a barrier to flocculation.

An alternative approach is to use ABA block co-polymers. The A blocks consist of solvent soluble chains, whereas the B block is insoluble. The B block will sit on the pigment surface and hold the A blocks in position to create the barrier.

Bibliography

Kirk Othmer Encyclopaedia of Chemical Technology, 3rd Edition. 1982. Wiley Interscience.

The Printing Ink Manual, edited by R.H. Leach & R.J. Peirce, 5th Edition. 1993. Blueprint.

Color Chemistry, H. Zollinger. 2nd, Revised. 1991. VCH.

Perry's Chemical Engineers' Handbook, Robert H. Perry, Don Green, 6th Edition. 1984. McGraw Hill.

Chemistry - The Central Science, 9th Edition, Brown, LeMay, Bursten & Burdge. 2003. Prentice-Hall.