Application of TRIZ in Software Development

By: Herman Hartmann, Ad Vermeulen and Martine van Beers
J.h.hartmann@philipscom

I ntroduction

TRIZ has become a powerful tool to solve problems and to creste inventive solutions. An
increasing number of patents are being generated with the help of TRIZ.

TRIZ ismainly used for mechanica problems and, in its current form, not as much for
electrica or software problems. Software is a growing part of a product and is becoming
the source of many problems. When TRIZ could be gpplied to software aswell, the
aoplicability of TRIZ could be expanded and software-related problems could be
avoided.

At firg glance TRIZ does't seem to gpply to software problems: no atoms, no
molecules, no layers to touch; no physica, no chemica effect to apply (see[1]). Yet
software problems have been successfully solved with the use of TRIZ. But, according to
many, dill alot of work needs to be done (see 2], [3], [4]).

This paper is meant to support the discussions on this subject. On some aspects more
experience is needed to obtain a clear picture. Any comment is gppreciated greetly.

Inventive Principles

The examplesin literature of goplying TRIZ to software are that of gpplying the
Inventive Principles (see [6] chapter 8 and 10). They are used to solve an agorithmic
problem by defining the ided Stuation, andlyzing the contradictions and using the
principles to develop a better dgorithm. (An intdligent dgorithm is something like the
equivaent of asmart congruction in Mechanical Enginesring.)

The trandation from these Inventive Principles into Software is very difficult to use for
many; even for very experienced TRIZ users. The trandation made by Kevin Rea ([2]
and [3)) isvery hepful but only if you are working in a certain gpplication area (in this
case that of concurrent programming). A better way isto use the methodology of Genrich
Altshuller by andyzing the patents in Software Engineering and develop acompletdy

new set of Inventive Principles and Contradiction Matrix.

The main contribution of TRIZ however liesin bresking through the “mentd inertid’ (see
[6], chepter 3). In most casesit is sufficient to solve the problem by systeméticaly
andyzing the contradictions and meking them visble usng agrgphical representation.
Miched Schlueter (see[1]) primarily usesthis and the IWB software to solve a problem.



Fast algorithms

The examples that are described in the TRIZ database concern the development of afast
and religble agorithm using limited resources (such as memory size and processor

speed).

The development of successful (patented) agorithms or standards can be commercidly
very interesting. Examples are: MP3 (for sound processing), MPEG (for Video
Processing) and fast search dgorithms (Google has become the number 1 search engine,
mainly because they own the fastest dgorithm). | don't know whether TRIZ is used to
develop these dgorithms and standards.

Graham Rawlinson (see[5]), however, concludes. “TRIZ is useful, but not often mind
blowing in the solutions derived”. The reason for this might be that the development of
fast dgorithms has been a subject of research since the early sixties (when computers
where expensgive and the resources where very limited). Many of the methods devel oped
then are il vaid now. Furthermore the use of graphica representations (amgjor
contributing factor of TRIZ in the fidld Mechanica Engineering) and forma methods to
describe Software is quite common.

Moore' slaw

The obsarvation made in 1965 by Gordon Moore, co-founder of Intel, that the number of
transstors per square inch on integrated circuits had doubled every year Sncethe
integrated circuit was invented. Moore predicted that this trend would continue for the
foreseeable future. In subsequent years, the pace dowed down a bit, but data density has
doubled gpproximatdly every 18 months, and thisis the current definition of Moore's
Law, which Moore himsdlf has blessed. Mogt experts, including Moore himsdlf, expect
Moore's Law to hold for at least another two decades. (From: www.webopedia.com)

The result of Moore' s Law isthat, because the capabilities of hardware are continuoudy
increasing, thereis mostly not a great chalenge for Software Engineers with respect to
gpeed and availability of memory. When the Software proves to be too dow, or requires
too much memory, amply wait for new Hardware and the problem is solved
automeatically.

Creeting fagt dgorithms isimportant when the required Hardware is not yet available for
alonger period of time. Video processing, search engines and wirdess data
communication are typical examples of today. In afew years time these will hardly be
issues anymore. The main chalenge in software development lies in managing the
increasing complexity due to the increasing Size of the software and software teams (see
section “ Software Sze' and “ Architecture Devel opment”).

In mechanica engineering there is a continuous chalenge in creating new products and
dedling with increasing contradictions. In many products the technicd limits have
(amost) been reached. For 100 years, automobiles have driven on combustion engines;



30 years after the Concorde gill thereisn't commercid supersonic flight and so forth. In
other words it becomes more and more difficult to develop new products, and the
increase in functiondity becomes smdler. Creativity and finding unorthodox solutions
while developing new productsis essentid.

An example: Suppose amechanica engineer of acar manufacturer goesto his boss, and
tellshim: “Boss, | am able to make our engine 5 % more efficient”. His boss probably
replies. “That's astonishing, take al the time you need and don't forget to write a patent”.
If a software engineer would go to his boss and telshim ”Bass, | can make our software
work 5 % faster”. His boss probably replies, “Thet's of no importance, next month we
will get the new processor which works twice as fast. Get back to your work, you sill
have 20 bugs to solve before the end of thisweek and don't waste any moretime’.

Software size

Asthe available memory isincreasing 2 timesin 18 months, so are the lines of code.
Therefore, software products are becoming bigger each year and more people are needed
to develop this software. There are trends like open systems; subcontracting; reuse, €t
cetera to overcomethis. All this crestes Stuations that are more complex, resulting in
project overruns, unrdiable software and unsatisfied customers.

The main chdlenge nowadays is to manage this increesng complexity. Since the early
nineties there is a strong emphasi's on software processes. Mogt organizations are using
the capability maturity mode (see [7]) or other frameworks to improve their software
development processes.

Architecture Development

Ancther way to ded with the increasing complexity isto create architecture of the
software. Software architecture provides the technica structure for a project. A good
architecture makes the rest of the work easy. A bad architecture makes the rest of the
work dmost impossible (see [8]).

In creating architectures one hasto ded with conflicting demands. The Architecture has

to fulfill functiond and non-functiond requirements. Examples of non-functiona
requirements are; portability, maintainability, flexibility, extendibility and reusshility.

These non-functiond requirements are dso know as Soft Intents, In some gpplication
areas a softgoal interdependency graph (see[9]) is used to visudize the conflicts. Mostly
solutions are a“bedt-fit” between these conflicting demands. Hardly ever al demands are
fully met.

TRIZ could be very ussful in solving these conflicting demands (Contradictions) in a
more satisfying manner. Since architectures are dso used in other fields of mechanica
engineering we can learn from the gpplication of TRIZ in thisfidd.

Trends of Technological Evolution



Dueto the rapidly increasing capabilities of softwareit is hard to tell what future
products will look like. It is very difficult to imagine whet is possble in the future and
what will be successful. (Who could have thought that SMS, downloadable ring-tones
and removable covers, have become mgor sdlling factors for mobile phones?)

TRIZ focuses on Technologica Evolution and this could be used to identify future
posshilities. Combined with commercid trends, this helps in defining successful
products in an earlier sage. Further research on thisis needed.

Conclusions

Although TRIZ Inventive Principles have been gpplied to solve Software problems, they
were only used to creete faster dgorithms. The additiona value of thisto the software
community islimited due to Moore' s law.

The TRIZ Inventive Principles could be very ussful in solving the contradictionsin the
creation of Software Architectures and the TRIZ Trends of Technical Evolution might be
ussful in identifying future product. The additiond value of thisto the software

community is much bigger. However, on both subjects no examples are described in
literature and thus further research is necessary.

Acknowledgements

The authors would like to thank Miched Schlueter for hep in getting us started and
reviewing this article and dso Graham Rawlinson and Kevin Reafor their previous work
and reviewing thisarticle.

Refer ences

[1] “Fast Software by TRIZ”, Michadl Schlueter, ETRIA World Conference - TRIZ
Future 2003

[2] TRIZ and Software — 40 Principle Andogies, Part 1, Kevin Rea, TRIZ-journd 2001
[3] TRIZ and Software — 40 Principle Andogies, Part 2, Kevin Rea, TRIZ-journd 2001
[4] Applying TRIZ to Software Problems, Kevin Rea, TRIZCON2002

[5] TRIZ and Software, Graham Rawlinson, TRIZCON2001

[6] Hands on systemétic innovation, Darrdl Mann 2002

[7] Managing the Software Process, Watts S. Humphrey, 1989

[8] Software Project Surviva Guide, Steve McConndl, 1998

[9] Non-Functiona Reguirementsin Software Engineering, L. Chung, 2000

Herman Hartmann

Software Process Improvement Consultant
Philips CFT

P.O.Box 218



5600 MD Eindhoven

The Netherlands

Td: +31-402737008
mailto:JH.Hatmann@philips.com

Ad Vermeulen
Innovation Consultant
Philips CFT
P.O.Box 218

5600 MD Eindhoven
The Netherlands

Martine van Beers
Innovation Consultant
Philips CFT
P.O.Box 218

5600 MD Eindhoven
The Netherlands



