Главная    Инструменты     Математика, ТРИЗ, Бартини и кое-что еще... (часть 2)

Размещено на сайте 18.12.2007.




Часть 1
Часть 2
Часть 3

Математика, ТРИЗ, Бартини и кое-что еще...

А.Б. Бушуев

Санкт-Петербургский государственный университет
информационных технологий, механики и оптики,
кафедра систем управления и информатики

bushuev@inbox.ru


Тренды ресурсов

Продолжим разбор задачи о запайке ампул. Мы остановились на том, что линия "изделие (L1) –> инструмент (L2) –> икс-элемент(L3) –> решение (L4)" для этой задачи аналогична тренду "точка-линия-поверхность-объем". Найдем этот тренд в LT-таблице. Очевидно, он находится в строке T0, где геометрическая размерность точки есть безразмерная величина L0, размерность линии - длина L1 и т.д. Каждый, кто хоть немного знает интегральное исчисление, скажет, что интеграл от дифференциала dl (точка) есть l (длина), а интеграл от ldl есть l2=S (поверхность) и т.д. (естественно, с точностью до безразмерных коэффициентов, которые мы уже договорились не учитывать).

Таким образом, по мере продвижения по тренду T0 от клетки к клетке слева направо геометрическая мерность пространства увеличивается на единицу путем умножения предыдущей мерности на L+1: Ln+1T0=LnT0 ·L+1. Можно утверждать, что размерности свойств всех элементов тренда имеют в своем составе множитель L+1, который передается по наследству от свойства к свойству, и который может быть назван геном длины. Ген длины передает всем элементам (поколениям) тренда физическое свойство: быть совокупностью (ансамблем) линий. Действительно, линия - это совокупность линий(из одной линии), поверхность - это совокупность линий, объем - это тоже совокупность линий и т.д.

Но тренд T0 в таблице неограничен как слева, так и справа, и может начинаться с любой клетки. Если он начинается с безразмерной величины L0T0, тогда все последующие поколения будут обладать свойством "быть совокупностью точек".

Выясним, как же физически или геометрически передается наследственное свойство.

Представим наше изделие, т.е. ампулу, стоящую вертикально (в деревянной кассете) и характеризуемую свойством высоты, измеряемым единицами длины. Допустим, что в начале никакого изделия и, тем более, его свойства высоты, нет. Тогда наша ампула вырождается в безразмерную точку, расположенную, например, на дне кассеты. Это будет начало отсчета. Возьмем другую точку, например, бусинку (нулевого радиуса) или пятнышко, кружок нулевой толщины (строго говоря, dl) и нулевого радиуса, и наложим его (или ee - бусинку) на первую точку, затем положим третью точку и т.д. Можно даже эти точки-кружки-бусинки накалывать на вертикальную ось как на спицу.

Наконец, накололи на спицу столько точек, что добрались до верхней точки ампулы. Получили прямую вертикальную линию нулевой толщины, но определенной длины. Именно эта линия и обладает абстрактным свойством высоты. Можно также сказать, что линия есть некоторое распределение точек вдоль высоты ампулы, и записать логическую формулу: линия = "И" точка "И" точка "И" точка...."И" точка... Формула эта выражает математическую операцию логического умножения "И"-"И" или соединения, сложения элементов в некоторую совокупность.

Вот где в первый раз проявился метод "И"-"И" Бартини - в геометрии. Недаром статья [7], где также напечатана LT-таблица, называется "Множественность геометрий и множественность физик".

Важно отметить, что свойство линии - ее высота, выражаемая в единицах длины, появляется уже при двух точках, расположенных в любых местах этой линии, например, в начале отсчета и на конце капилляра. Тогда минимальная логическая формула для линии будет такая: линия = "И" точка "И" точка.

Аналогично поступаем дальше и определяем свойство инструмента y, которое определено как поверхность пламени, контактирующая с ампулой. Так как свойство линии, измеряемое длиной, уже выяснено, то берем эту самую линию и сворачиваем ее в кольцо вполне определенного диаметра, равного диаметру ампулы и пропорционального длине с некоторым безразмерным коэффициентом. Толщину кольца выбираем, естественно, нулевой (строго, dl) - вот оно, наследственное свойство точки!

Далее такие кольца начинаем накалывать на нашу спицу, формируя из них, поверхность контакта. В районе капилляра кольца, конечно, должны быть существенно меньшего радиуса.

Ясно, что поверхность (совокупность колец) или свойство инструмента есть определенное распределение линий вдоль (ген L+1 !) высоты ампулы. Минимальная логическая формула поверхности: S = "И" линия "И" линия.

Теперь будем формировать объем или свойство y икс-элемента путем наращивания на dl того измерения, которое на предыдущей итерации было нулевым. Нулевой толщиной стенок обладает цилиндрическая поверхность, образующая из колец поверхность контакта или оперативную зону в терминологии АРИЗ. Наращиваем толщину стенок поверхности, появляется распухающий цилиндр, который и образует объем - свойство икс-элемента. В данном случае объем является определенным распределением поверхностей вдоль другого направления, перпендикулярного высоте. Иначе и объем не образовать. Но, с другой стороны, объем распределен определенным образом и по высоте ампулы: в районе лекарства - это толстый цилиндр, в районе капилляра - тонкий, да еще есть переход от толстого к тонкому. Минимальная логика объема: V = "И" поверхность "И" поверхность.

Наконец, последняя итерация - образование геометрического образа решения. Мысленно берем кубики объема (или то объемное, за что можно ухватить), и начинаем накалывать на вертикальную спицу. Получаем, что решение в пространстве, есть, по крайней мере, определенное распределение объема по высоте ампулы, т.е. по изделию. Мы-то не знаем пока, что этот объем должна занимать вода, но геометрия подсказывает, что "вода" по высоте ампулы может быть распределена по-разному. Например, снизу много - "толстый" объем, сверху мало - "тонкий" объем. Получается то же самое, когда две точки уже дают линию, а две линии -поверхность, так и два объема ("И" толстый, "И" тонкий или "И" длинный, "И" короткий (в пределе - нулевой длины)), размещенные вдоль изделия, дают минимальный геометрический образ решения.

Пространственный анализ задачи по таблице Бартини в некотором смысле аналогичен шагу 2.1 АРИЗа. Там тоже определяются ресурсы пространства, в котором находится конфликт, и куда надо вводить икс-элемент.

В чем отличие? В АРИЗе икс-элемент надо помещать в оперативную зону, т.е. в данном решении - на поверхность ампулы. Не сразу доходит до сознания, что это может быть вода: как же она удержится на поверхности? Конечно, потом дойдет (да если еще и преподаватель пояснит!), что если наливать воду, и она будет скатываться вниз по ампуле, то необходимо ампулу поставить в какой-то объем, чтобы вода не утекала. Здесь же, по Бартини, получается сразу, что икс-элемент должен иметь объем.

Еще ценной информацией является установление места размещения икс-элемента в геометрии задачи. Действительно, сначала идет изделие со своей спицей-высотой, потом, как граница разделения, инструмент со своей поверхностью, затем, по другую сторону границы, икс-элемент в своем объеме.

Мы не знаем, как Бартини называл строки своей таблицы, в частности, строку T0 . Поэтому введем свою терминологию, назовем эту строку трендом пространственных ресурсов (или пространственным трендом), да и все остальные строки тоже. Они одинаковы в том смысле, что размерность каждой последующей клетки тренда получается умножением размерности предыдущей клетки на ген длины L+1 .

Например, рассмотрим фрагмент пространственного тренда LnT-4: L-2T-4, L-3T-4, L-4T-4 или "давление - поверхностное натяжение - сила". Если L-2T-4 есть давление в точке, то L-3T-4 есть распределение давления по длине, а сила L-4T-4 есть распределение давления по поверхности.

Естественно, столбцы таблицы будем называть трендами временных ресурсов или просто временными трендами. Они одинаковы в том смысле, что размерность каждой последующей клетки тренда получается умножением размерности предыдущей клетки на ген времени T+1, если продвигаться сверху вниз, или умножением на T -1, если продвигаться снизу вверх. Аналогичны связям на пространственных трендах и интегральные или дифференциальные связи между элементами временных трендов. Например, на временном тренде L+1T m клетка с размерностью L+1T-2 является линейным ускорением, следующая клетка L+1T-1 является интегралом от линейного ускорения, т.е. линейной скоростью, следующая клетка L+1T0 является интегралом от линейной скорости, т.е. длиной и т.д.

Анализ на временном тренде ничем не отличается от анализа на тренде пространственных ресурсов, только дифференциал длины dl заменяется на дифференциал времени dt. Правда, появляются такие непривычные термины как поверхность времени L0T2 или объем времени L0T3, но мы здесь разбирать их не будем, поскольку это не повлияет на дальнейшее расследование метода Бартини. Желающие познакомиться с этим вопросом подробнее, могут обратиться к литературе [14], где в приложении есть время даже в пятой степени.

По аналогии с АРИЗом, в котором кроме оперативных пространства (зоны) и времени, анализируются также и вещественно-полевые ресурсы, определим тренды вещественно-полевых ресурсов как диагонали таблицы, проходящие слева снизу направо вверх (тренды ВПР).

Рисунок. Тренды ВПР
Рисунок. Тренды ВПР

Тренды ВПР (см.рис.) образуют 7 диагоналей, содержащих физические свойства с размерностями LmTn, при |m+n|3 реализуемые в трехмерном пространстве. Легко заметить, что все тренды ВПР от поколения к поколению передают ген скорости V=L1T-1. В этом - их общность. Однако есть и различие между трендами, а именно, в сумме Sn+m = n+m показателей степени n и m для размерностей LnTm.

Желтый тренд имеет сумму Sn+m =0 и передает по наследству вдоль тренда ген LnT-n. Серые тренды имеют сумму Sn+m =±1 и передают гены LnT-n±1. Голубые тренды имеют сумму Sn+m =±2 и гены LnT-n±2 . Наконец, зеленые тренды имеют сумму Sn+m =±3 и передают гены LnT-n±3.

Возникает вопрос, как же пользоваться всеми этими трендами, как найти вещественно-полевой ресурс или свойство икс-элемента?

В задаче о запайке ампул мы нашли только пространственный образ икс-элемента, т.е. одну координату - по оси L, равную L3. Значит, мы находимся в клетке L3T0 и ни вправо, и ни влево уходить с нее не можем. Иначе получим L в другой степени. Поэтому необходимо либо передвигаться по временному тренду L3Tm вверх или вниз до нужной клетки, либо остаться в исходной клетке L3T0, считая что объем есть не только пространственный ресурс, но и вещественно-полевой.

Проницательный читатель, конечно, давно догадался, что нам делать. Но мы, увы, не так проницательны, поэтому поступим по-научному. Найдем вторую координату. Ведь пока мы использовали только один фактор, одно свойство, определяющее хорошую запайку, а именно, длину оплавленного капилляра. Поэтому одну координату и получили. А второй фактор - температуру, от которой портится лекарство, пока не использовали. Давайте это и сделаем.

В работах [11,12] получено дифференциальное уравнение, описывающее эволюцию свойства икс-элемента после момента "озарения" или захвата икс-элемента системой мысленного поиска и слежения в сознании изобретателя

Kdz/dt = 3xy - az, (3)

где x и y - координаты, описывающие эволюцию конкурирующих свойств технического противоречия, z - координата, определяющая эволюцию икс-элемента в режиме слежения, K - некоторый коэффициент, зависящий от психологической инерции, а - коэффициент, зависящий от остроты мышления.

Когда инерция преодолена, свойство z икс-элемента четко фиксируется сознанием, т.е. z уже не изменяется, наступает установившийся режим dz/dt=0, и из дифференциального уравнения (3) получаем алгебраическое уравнение

z=3xy/a=Cxy. (4)

Произведение xy передает наследственную информацию о свойствах x и y "родителей", свойству z их "ребенка", т.е. икс-элементу. Для определения физического свойства z переходим от математического уравнения (4) к его физического эквиваленту в виде уравнения размерностей в базисе LT-таблицы Бартини

Lm3Tn3=C · Lm1Tn1 ·Lm2Tn3. (5)

Постоянная C является размерной константой, т.е. C=Lm4Tn4, и где все mi и nj - целые числа, положительные и отрицательные.

В уравнении (5) произведение Lm1Tn1 ·Lm2Tn3 определяет тот элемент тренда ВПР, в котором заложены свойства того и другого "родителей". Сам же тренд ВПР, проходящий через этот элемент с размерностью Lm1Tn1 ·Lm2Tn3, может быть назван родительским.

Определим родительский тренд ВПР для задачи о запайке ампул. Для этого найдем факторы, разнородно влияющие на важную потребительскую характеристику нашей запайки. Ясно, что этой характеристикой является качество запайки. Будем считать, что на качество запайки влияют всего два разнородных фактора: длина оплавленного капилляра и температура лекарства. Конечно, результат этот мы в чистом виде взяли из АРИЗа.

Теперь эти два фактора мы должны сложить, соединить, и передать нашему икс-элементу. Решение должно иметь И "хорошую" длину оплавленного капилляра, И "хорошую" температуру лекарства. Для этого используем логическое умножение "И-И": размерность длины умножаем на размерность температуры в соответствии с (5) и получаем размерность элемента на родительском тренде

L6T-4 L+1T0 ·L5T-4

Обратите внимание, что свойства длины и температуры численно заложены в показателях степени при L и T, и при умножении размерностей эти показатели складываются. Таково второе проявление метода "И-И" Бартини.

Находим сумму Sn+m =6-4=2 . По величине Sn+m находим, что это нижний голубой тренд на рисунке. Каковы могут быть дальнейшие движения в поиске ответа? Имеются только две альтернативы: либо остаться в этой точке L6T-4 и считать это свойство искомым ресурсом икс-элемента, либо продвигаться по родительскому тренду (по диагонали) в поисках нового решения.

Почему именно по диагонали? Потому что мы ищем вещественно-полевой ресурс, а не пространственный и не временной. Для нашей же задачи о запайке мы непременно должны продвигаться по диагонали родительского тренда, так как нам необходимо пересечение с временным трендом L3Tm. По голубому тренду идем вниз налево и, наконец, находим ячейку "расход объема" с размерностью L3T-1.

Мы-то знаем, решив задачу по АРИЗу, что икс-элементом является вода, но Бартини этого пока не знает. Более того, в рассмотренной выше постановке задачи (факторы: длина+температура) для Бартини икс-элементом является некоторый поток, измеряемый в [м3/с]. И поток этот должен быть как-то распределен по высоте ампулы. Можно ли сказать, из чего состоит этот поток? Можно догадаться (в LT-таблице нет воды!), так как одним их существенных факторов является температура, а потоком в этом случае может быть поток хладоносителя или теплоносителя. Вспомним из МаТХЭМ, что термическое поле бывает или поле нагрева или поле охлаждения.

Но для других полей это не так очевидно. Даже и в этой задаче, не формулируя физического противоречия, можно прийти к решению, когда граница между нагревом и охлаждением не явно выражена. Например, можно представить, что снизу ампулу обтекает поток холодной воды, но температура воды по мере увеличения высоты ампулы растет, и в районе капилляра уже перегретый водяной пар оплавляет стекло. Конечно, здесь есть фазовый переход первого рода, изменение агрегатного состояния, но в других задачах, с другими хладоносителями и другими температурами запайки, точка фазового перехода может находиться вне диапазона, так сказать, "рабочих" температур (запайки и перегрева).

Для выхода из такой ситуации, по всей видимости, Бартини формулировал и физическое противоречие. Для задачи запайки ФП можно записать так: икс-элемент должен быть горячим, чтобы не мешать сильному пламени оплавлять капилляр, и должен быть холодным, чтобы не перегревалось лекарство. Можно ли разрешить такое ФП по методу Бартини?

Свойство "горячий" и свойство "холодный" должны передаться икс-элементу, а измеряются они оба в градусах температуры. Поэтому размерность температуры возводим в квадрат и находим элемент родительского тренда

(L5T-4) 2= L10T-8 .

Определяем сумму показателей Sn+m =10-8=2. Мы попали на тот же самый нижний голубой тренд, а, следовательно, получим то же самое решение.

Вполне возможно, что найдутся скептики, которые скажут, что все эти движения по трендам и получаемые результаты являются случайным совпадением.

Сформулируем другое ФП: длина пламени должна быть большой, чтобы хорошо запаять, и должна быть маленькой, чтобы не перегреть. По образцу и подобию предыдущего варианта возводим длину в квадрат

(L1T0) 2= L2T0 .

Определяем сумму показателей Sn+m =2+0=2. Мы снова на том же тренде ВПР!

- Что теперь скажете?.. Ах, Вы уже молчите!-

- Подождите, то ли еще будет!-

Разбирая задачу о запайке ампулы, Альтшуллер и Селюцкий указывали вариант, при котором качество запайки определялось временем нагрева ампулы: большое время - хорошая запайка, но порча лекарства, малое время - плохая запайка, но не портится лекарство. Отсюда ФП - "И" большое, "И" малое время нагрева (т.е. "хорошее" время - которое и надо!).

Возводим в квадрат (L0T1) 2= L0T2 .

Определяем сумму показателей Sn+m =0+2=2.

Вариант без подробностей и без ФП, учет только главных факторов: "И" время пайки, "И" длина капилляра:

L0T1 ·L1T0= L1T1 .

Sn+m =1+1=2.

"И" время, "И" температура:

L0T1 ·L5T-4= L5T-3 .

Sn+m =5-3=2.

После этого становится грустно: LT-таблица уже лет 40 как опубликована и валяется бесполезным хламом для тризовцев.

А ведь это - физический базис техники, возможность математического оперирования свойствами! Вот где нам наша математика боком вышла!

Да, "Бартини - это голова!" [Ю.П.Саламатов, см.выше]. А мы? Мы - пикейные жилеты! И никто нам даже палец в рот не положит! Нам остается только составить матрицу, в которой приведен баланс ресурсов для родительского тренда.


Часть 3


Список литературы [к началу]

1. Королев В.А. Другая ТРИЗ. "Энциклопедия ТРИЗ", 1999.

2. Чутко И. Э. Красные самолеты. - М.: Политиздат, 1978. - 128 с.

3. Кудрявцев А.В. Роберт Бартини. "Metodolog.ru" , 2005.

4. Саламатов Ю.П. Ответ на форуме сайта "Institute of Innovative Design" от 19.10.2006.

5. Ильф И. и Петров Е. Двенадцать стульев. - М.: Художественная литература, 1974. - 295 с.

6. Ди Бартини Р.О. Некоторые соотношения между физическими константами. Доклады А к а д е м и и наук СССР 1965. Том 163, N. 4. C.861-864.

http://ph-pr.narod.ru/bartini.htm

7. Ди Бартини Р.О., Кузнецов П.Г. Множественность геометрий и множественность физик. // Материалы семинара "Кибернетика электроэнергетических систем". Брянск,1974.

http://situation.ru/app/rs/lib/pobisk/ur_model_sys/ur_model_sys.htm

8. Randall Marin. TRIZ AND THE OPTIMIZATION CONJECTURE. TRIZfest-07 "Теория и практика решения изобретательских задач" Сб. докладов конференции. Москва, 2007.

9. Лабковский Б.А. Наука изобретать. - СПб.: Нордмет-Издат, 2000. - 372 c. ISBN 5-93114-013-1.

10. Бушуев А.Б. Моделирование противоречий в АРИЗ. "Metodolog.ru" , 2005

11. Бушуев А.Б. Динамический вепольный анализ в АРИЗ. "Metodolog.ru" , 2005

12. Бушуев А.Б. Х-элемент: поиск, захват, слежение. Труды Международной конференции ТРИЗФЕСТ 2006// "Три поколения ТРИЗ". Россия. СПб. 2006. с.310-317. http://www.matriz.ru/6activity/06-works/06-works-05.pdf

13. Альтшуллер Г.С., Селюцкий А.Б. Крылья для Икара: Как решать изобретательские задачи.- Петрозаводск: Карелия, 1980. - 224 с.

14. http://pobisk.narod.ru/Pr-ob-ch/003_oglav.htm

15. Шуб Л. Осторожно! Таблица технических противоречий. "Metodolog.ru" , 2006.

16. Альтшуллер Г.С. Найти идею. Введение в теорию решения изобретательских задач.- Новосибирск: Наука. Сиб. отд-ние, 1991.- 225 с. ISBN 5-02-029265-6.

17. Дерзкие формулы творчества/ Составитель Селюцкий Б.А. - Петрозаводск: Карелия, 1987. - 269 с.

18. Andrei Aleinikov. NINE NEW LAWS OF CONSERVATION: FUTURE SCIENCE HORIZONS. Allied Academies International Conference. Reno, NV, October 3-5, 2007. Academy of Strategic Management . PROCEEDINGS. V. 6, N. 2 2007, pp.5-10.

19. Karasik Y.B. TRIZ-journal as a podium for mentally ill people. Anti TRIZ-journal, December 2004, Vol.3, No.11.

Copyright © 2007 А.Б.Бушуев

В тексте сохранены авторская орфография и пунктуация.


Главная    Инструменты     Математика, ТРИЗ, Бартини и кое-что еще... (часть 2)